
Samuel Venner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1018206/publications.pdf Version: 2024-02-01

SAMILEL VENNED

#	Article	IF	CITATIONS
1	Interbacterial Transfer of Carbapenem Resistance and Large Antibiotic Resistance Islands by Natural Transformation in Pathogenic Acinetobacter. MBio, 2022, 13, e0263121.	4.1	15
2	Rifampicin exposure reveals within-host Mycobacterium tuberculosis diversity in patients with delayed culture conversion. PLoS Pathogens, 2021, 17, e1009643.	4.7	10
3	Counterâ€gradient variation of reproductive effort in a widely distributed temperate oak. Functional Ecology, 2021, 35, 1745-1755.	3.6	3
4	Flower phenology as a disruptor of the fruiting dynamics in temperate oak species. New Phytologist, 2020, 225, 1181-1192.	7.3	26
5	Resource manipulation through experimental defoliation has legacy effects on allocation to reproductive and vegetative organs in <i>Quercus ilex</i> . Annals of Botany, 2020, 126, 1165-1179.	2.9	8
6	Scarless Removal of Large Resistance Island AbaR Results in Antibiotic Susceptibility and Increased Natural Transformability in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	28
7	Bacterial Transformation Buffers Environmental Fluctuations through the Reversible Integration of Mobile Genetic Elements. MBio, 2020, 11, .	4.1	19
8	How does increasing mast seeding frequency affect population dynamics of seed consumers? Wild boar as a case study. Ecological Applications, 2020, 30, e02134.	3.8	32
9	Subcultured Mycobacterium tuberculosis isolates on different growth media are fully representative of bacteria within clinical samples. Tuberculosis, 2019, 116, 61-66.	1.9	7
10	Pollen limitation as a main driver of fruiting dynamics in oak populations. Ecology Letters, 2019, 22, 98-107.	6.4	48
11	The ground plot counting method: A valid and reliable assessment tool for quantifying seed production in temperate oak forests?. Forest Ecology and Management, 2018, 430, 143-149.	3.2	11
12	Reproductive allocation in pulsed-resource environments: a comparative study in two populations of wild boar. Oecologia, 2017, 183, 1065-1076.	2.0	43
13	Increasing spring temperatures favor oak seed production in temperate areas. Scientific Reports, 2017, 7, 8555.	3.3	73
14	Ecological networks to unravel the routes to horizontal transposon transfers. PLoS Biology, 2017, 15, e2001536.	5.6	39
15	Fruiting Strategies of Perennial Plants: A Resource Budget Model to Couple Mast Seeding to Pollination Efficiency and Resource Allocation Strategies. American Naturalist, 2016, 188, 66-75.	2.1	26
16	Revisiting the link between breeding effort and oxidative balance through field evaluation of two sympatric sibling insect species. Evolution; International Journal of Organic Evolution, 2015, 69, 815-822.	2.3	10
17	Determining the instar of a weevil larva (Coleoptera: Curculionidae) using a parsimonious method. European Journal of Entomology, 2014, 111, 567-573.	1.2	8
18	Endosymbiont diversity among sibling weevil species competing for the same resource. BMC Evolutionary Biology, 2013, 13, 28.	3.2	20

SAMUEL VENNER

#	Article	IF	CITATIONS
19	Dispersal and dormancy strategies among insect species competing for a pulsed resource. Ecological Entomology, 2013, 38, 470-477.	2.2	32
20	From Income to Capital Breeding: When Diversified Strategies Sustain Species Coexistence. PLoS ONE, 2013, 8, e76086.	2.5	15
21	Contrasted breeding strategies in four sympatric sibling insect species: when a proovigenic and capital breeder copes with a stochastic environment. Functional Ecology, 2012, 26, 198-206.	3.6	27
22	A handbook for uncovering the complete energetic budget in insects: the van Handel's method (1985) revisited. Physiological Entomology, 2012, 37, 295-302.	1.5	112
23	Coexistence of Insect Species Competing for a Pulsed Resource: Toward a Unified Theory of Biodiversity in Fluctuating Environments. PLoS ONE, 2011, 6, e18039.	2.5	44
24	Make Love Not War: When Should Less Competitive Males Choose Lowâ€Quality but Defendable Females?. American Naturalist, 2010, 175, 650-661.	2.1	49
25	Ecophysiological attributes of adult overwintering in insects: insights from a field study of the nut weevil, <i>Curculio nucum</i> . Physiological Entomology, 2009, 34, 61-70.	1.5	35
26	Dynamics of transposable elements: towards a community ecology of the genome. Trends in Genetics, 2009, 25, 317-323.	6.7	147
27	Spatially heterogeneous stochasticity and the adaptive diversification of dormancy. Journal of Evolutionary Biology, 2009, 22, 2094-2103.	1.7	27
28	Unexpected male choosiness for mates in a spider. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 77-82.	2.6	77
29	Dynamic optimization over infinite-time horizon: Web-building strategy in an orb-weaving spider as a case study. Journal of Theoretical Biology, 2006, 241, 725-733.	1.7	20
30	Mate-guarding strategies and male competitive ability in an orb-weaving spider: results from a field study. Animal Behaviour, 2006, 71, 1315-1322.	1.9	45
31	Spider webs designed for rare but life-saving catches. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1587-1592.	2.6	87
32	Body-mass-dependent cost of web-building behavior in an orb weaving spider, Zygiella x-notata. Die Naturwissenschaften, 2003, 90, 269-272.	1.6	43
33	Estimation of the Web's Capture Thread Length in Orb-Weaving Spiders: Determining the Most Efficient Formula. Annals of the Entomological Society of America, 2001, 94, 490-496.	2.5	29
34	Web-building behaviour in the orb-weaving spider Zygiella x-notata: influence of experience. Animal Behaviour, 2000, 59, 603-611.	1.9	89