
Jale Hacaloglu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1018125/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation and characterization of poly(lactic acid) composites involving aromatic diboronic acid and organically modified montmorillonite. Journal of Thermal Analysis and Calorimetry, 2021, 143, 3117-3126.	3.6	5
2	The effect of 3-hydroxyphenylboronic acid on thermal characteristics of polybenzoxazine based on phenol and 4-aminomethylbenzoate. Journal of Polymer Research, 2020, 27, 1.	2.4	3
3	Synthesis and analysis of thermal characteristics of polybenzoxazine based on phenol and 3 â€Amino phenyl boronic acid. Journal of Polymer Science Part A, 2019, 57, 1711-1716.	2.3	5
4	Poly(methyl methacrylate) nanocomposites involving aromatic diboronic acid. Polymer Bulletin, 2019, 76, 6231-6243.	3.3	0
5	Thermal degradation of Polylactide/Poly(ethylene glycol) fibers and composite fibers involving organoclay. Journal of Analytical and Applied Pyrolysis, 2018, 129, 181-188.	5.5	9
6	The effect of aromatic diboronic acid on characteristics of polybenzoxazine based on phenol and 4-aminomethylbenzoate. Journal of Polymer Research, 2018, 25, 1.	2.4	5
7	Effects of aromatic diboronic acid on thermal charateristics of polybenzoxazines based on phenol and aniline. European Polymer Journal, 2018, 108, 182-190.	5.4	10
8	Characterization of polymer/nanoclay composites via direct pyrolysis mass spectrometry. Journal of Analytical and Applied Pyrolysis, 2018, 134, 395-404.	5.5	3
9	Polylactide/organically modified montmorillonite composite fibers. Journal of Analytical and Applied Pyrolysis, 2017, 124, 186-194.	5.5	6
10	Poly(methyl methacrylate) organoclay composites; interactions of organic modifier with the polymer effecting thermal degradation behavior. European Polymer Journal, 2017, 95, 474-481.	5.4	13
11	Characterizations of PLA-PEG blends involving organically modified montmorillonite. Journal of Analytical and Applied Pyrolysis, 2017, 127, 343-349.	5.5	27
12	Thermal degradation of polystyrene composites. Part II. The effect of nanoclay. Journal of Analytical and Applied Pyrolysis, 2016, 120, 194-199.	5.5	7
13	Effects of nanoparticles on thermal degradation of polylactide/aluminium diethylphosphinate composites. Journal of Analytical and Applied Pyrolysis, 2016, 118, 115-122.	5.5	26
14	Characterization of polylactide/poly(ethylene glycol) blends via direct pyrolysis mass spectrometry. Journal of Analytical and Applied Pyrolysis, 2016, 122, 315-322.	5.5	8
15	Polylactide/organically modified montmorillonite composites; effects of organic modifier on thermal characteristics. Polymer Degradation and Stability, 2016, 134, 87-96.	5.8	31
16	Effects of curing on structure and thermal characteristics of polybenzoxazine based on p-nitroaniline. Polymer Degradation and Stability, 2016, 129, 363-373.	5.8	12
17	Thermal degradation of polylactide and its electrospun fiber. Fibers and Polymers, 2016, 17, 66-73.	2.1	13
18	Preparation and thermal characterization of poly(2â€vinylpyridine) copolymers coordinated to Cr nanoparticles. Polymers for Advanced Technologies, 2015, 26, 555-560.	3.2	4

JALE HACALOGLU

#	Article	IF	CITATIONS
19	Pyrolysis of of poly(methy methacrylate) copolymers. Journal of Analytical and Applied Pyrolysis, 2015, 113, 529-538.	5.5	20
20	Thermal degradation of polylactide/aluminium diethylphosphinate. Journal of Analytical and Applied Pyrolysis, 2014, 110, 155-162.	5.5	17
21	Direct Pyrolysis ―Mass Spectrometry Analysis of Thermal Degradation of Thioâ€Clickâ€Modified Poly(2â€oxazoline). Macromolecular Chemistry and Physics, 2014, 215, 148-152.	2.2	4
22	Preparation and characterization of polystyrene-b-poly(2-vinylpyridine) coordinated to metal or metal ion nanoparticles. Journal of Analytical and Applied Pyrolysis, 2014, 106, 81-85.	5.5	5
23	Thermal degradation of polystyrene composites. Part I. The effect of brominated polyepoxy and antimony oxide. Journal of Analytical and Applied Pyrolysis, 2014, 105, 301-308.	5.5	6
24	Metal ion functional polybenzoxazine based on phenol and 2-aminopyridine. Polymer, 2014, 55, 3533-3542.	3.8	8
25	Synthesis, characterization, and thermal properties of alkylâ€functional naphthoxazines. Journal of Applied Polymer Science, 2013, 127, 3114-3123.	2.6	15
26	Direct pyrolysis mass spectrometry to investigate the effects of dopants on characteristics of polypyrrole and its copolymers. Journal of Thermal Analysis and Calorimetry, 2013, 111, 1133-1138.	3.6	1
27	Thermal degradation of poly(2-vinylpyridine) copolymers. Polymer Degradation and Stability, 2013, 98, 356-360.	5.8	8
28	Thermal degradation of poly(isobornyl acrylate) and its copolymer with poly(methyl methacrylate) via pyrolysis mass spectrometry. Journal of Analytical and Applied Pyrolysis, 2013, 100, 17-25.	5.5	22
29	Direct pyrolysis mass spectrometry analyses of polyamideâ€6 containing melamine and boron compounds. Polymer Composites, 2013, 34, 1389-1395.	4.6	0
30	Investigation of thermal degradation characteristics of polyamide-6 containing melamine or melamine cyanurate via direct pyrolysis mass spectrometry. Journal of Analytical and Applied Pyrolysis, 2012, 98, 221-230.	5.5	39
31	Investigation of polymerization of benzoxazines and thermal degradation characteristics of polybenzoxazines via direct pyrolysis mass spectrometry. Polymer International, 2012, 61, 1532-1541.	3.1	30
32	Direct Insertion Mass Spectrometric Analysis of Thermal Degradation of Poly(2â€alkylâ€2â€oxazoline). Macromolecular Chemistry and Physics, 2012, 213, 945-951.	2.2	7
33	Thermal degradation characteristics of polysulfones with benzoxazine end groups. Journal of Analytical and Applied Pyrolysis, 2012, 94, 146-152.	5.5	20
34	Thermal degradation of organophosphorus flame-retardant poly(methyl methacrylate) nanocomposites containing nanoclay and carbon nanotubes. Polymer Degradation and Stability, 2012, 97, 273-280.	5.8	29
35	Thermal Degradation Mechanisms of Polybenzoxazines. , 2011, , 287-305.		8
36	Thermal degradation mechanisms of aluminium phosphinate, melamine polyphosphate and zinc borate in poly(methyl methacrylate). Polymer Degradation and Stability, 2011, 96, 1780-1787.	5.8	53

Jale Hacaloglu

#	Article	IF	CITATIONS
37	Thermal degradation of polysiloxane and polyetherester containing benzoxazine moieties in the main chain. Journal of Analytical and Applied Pyrolysis, 2011, 90, 155-163.	5.5	29
38	Characterization of β yclodextrin modified SiO ₂ . Surface and Interface Analysis, 2011, 43, 884-892.	1.8	15
39	Cyclodextrin functionalized poly(methyl methacrylate) (PMMA) electrospun nanofibers for organic vapors waste treatment. Journal of Membrane Science, 2010, 365, 409-417.	8.2	75
40	The use of pyrolysis mass spectrometry to investigate polymerization and degradation processes of methyl amine-based benzoxazine. Polymer Testing, 2010, 29, 520-526.	4.8	30
41	Functional Electrospun Polystyrene Nanofibers Incorporating α-, β-, and γ-Cyclodextrins: Comparison of Molecular Filter Performance. ACS Nano, 2010, 4, 5121-5130.	14.6	137
42	Electrospinning of functional poly(methyl methacrylate) nanofibers containing cyclodextrin-menthol inclusion complexes. Nanotechnology, 2009, 20, 125703.	2.6	77
43	The characterization of polyaniline and polypyrrole composites by pyrolysis mass spectrometry. Journal of Applied Polymer Science, 2009, 113, 3130-3136.	2.6	7
44	High temperature pyrolysis of poly(phenylene vinylene)s with poly(ε-caprolactone) or polystyrene side chains. Journal of Thermal Analysis and Calorimetry, 2009, 98, 527-532.	3.6	2
45	Thermal degradation of poly(vinylpyridine)s. Polymer Degradation and Stability, 2009, 94, 738-743.	5.8	19
46	Thermal decomposition of polystyrene-b-poly(2-vinylpyridine) coordinated to co nanoparticles. Polymer Degradation and Stability, 2009, 94, 2023-2027.	5.8	11
47	Electrospun polystyrene fibers containing high temperature stable volatile fragrance/flavor facilitated by cyclodextrin inclusion complexes. Reactive and Functional Polymers, 2009, 69, 145-150.	4.1	79
48	The formation and characterization of cyclodextrin functionalized polystyrene nanofibers produced by electrospinning. Nanotechnology, 2009, 20, 125605.	2.6	40
49	Pyrolysis of poly(phenylene vinylene)s with polycaprolactone side chains. Polymer Degradation and Stability, 2008, 93, 904-909.	5.8	9
50	Characterization of polyaniline via pyrolysis mass spectrometry. Journal of Applied Polymer Science, 2008, 108, 400-405.	2.6	6
51	Polymerisation and degradation of an aromatic amine-based naphthoxazine. Polymer Degradation and Stability, 2008, 93, 2096-2103.	5.8	26
52	Characterization of Conducting Copolymer of Pyrrole via Pyrolysis Mass Spectrometry. Journal of Macromolecular Science - Pure and Applied Chemistry, 2008, 45, 201-204.	2.2	4
53	Investigation of the Effect of Dopant on Characteristics of Poly(3â€methyl thiophene) via Pyrolysis Mass Spectrometry. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 259-263.	2.2	7
54	Pyrolysis mass spectrometry analysis of polycarbonate/poly(methyl methacrylate)/poly(vinyl acetate) ternary blends. Polymer Degradation and Stability, 2007, 92, 32-43.	5.8	15

JALE HACALOGLU

#	Article	IF	CITATIONS
55	Thermal degradation of poly(p-phenylene-graft-É›-caprolactone) copolymer. Polymer Degradation and Stability, 2007, 92, 838-848.	5.8	15
56	Pyrolysis of polyphenylenes with PCL or/and PSt side chains. Journal of Analytical and Applied Pyrolysis, 2007, 80, 453-459.	5.5	14
57	A pyrolysis mass spectrometry study of polythiophene copolymers. Polymer Degradation and Stability, 2007, 92, 822-828.	5.8	7
58	Investigation of Copolymers of Thiopheneâ€Functionalized Polystyrene with Pyrrole by Pyrolysis Mass Spectrometry. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 655-665.	2.2	6
59	Investigation of Chlorinated Poly(Propylene Oxide) and Polyepichlorohydrin by Direct Pyrolysis Mass Spectrometry. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 1399-1407.	2.2	3
60	Pyrolysis mass spectrometry analysis of poly(vinyl acetate), poly(methyl methacrylate) and their blend coalesced from inclusion compounds formed with γ-cyclodextrin. Polymer Degradation and Stability, 2006, 91, 1-11.	5.8	35
61	Thermal degradation processes of poly(carbonate) and poly(methyl methacrylate) in blends coalesced either from their common inclusion compound formed with γ-cyclodextrin or precipitated from their common solution. Polymer Degradation and Stability, 2006, 91, 2471-2481.	5.8	14
62	Thermal degradation of polycarbonate, poly(vinyl acetate) and their blends. Polymer Degradation and Stability, 2006, 91, 2960-2967.	5.8	37
63	The Solid Channel Structure Inclusion Complex Formed Between Guest Styrene and Host Î ³ -Cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 55, 109-121.	1.6	33
64	Reorganization and improvement of bulk polymers by processing with their cyclodextrin inclusion compounds. Polymer, 2005, 46, 4762-4775.	3.8	50
65	Pyrolysis mass spectrometry analyses of poly(3-methylthiophene). Journal of Analytical and Applied Pyrolysis, 2005, 73, 257-262.	5.5	5
66	Intimate blending of binary polymer systems from their common cyclodextrin inclusion compounds. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2578-2593.	2.1	29
67	Characterization of Conducting Copolymers of Succinic Acid Bisâ€(â€4â€pyrrolâ€1â€ylâ€phenyl) Ester and Thiophene via Pyrolysis Mass Spectrometry. Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 277-289.	2.2	2
68	Characterization of Conducting Copolymer of Thiophene via Pyrolysis Mass Spectrometry. Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 1639-1653.	2.2	1
69	Pyrolysis Mass Spectrometry Analysis of Electrochemically Grafted Polyacrylonitrile with Thiophene. Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 1387-1397.	2.2	6
70	Investigation of the effect of substituent on the growth of polymer for 3-substituted polythiophenes via pyrolysis mass spectrometry. Synthetic Metals, 2005, 155, 191-195.	3.9	6
71	Pyrolysis Mass Spectrometry Analysis of BF4â^'Doped Polythiophene. Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 713-725.	2.2	11
72	Characterization of doped polypyrrole–poly(methylthienyl methacrylate) films via pyrolysis mass spectrometry. Polymer International, 2004, 53, 926-930.	3.1	6

JALE HACALOGLU

#	Article	IF	CITATIONS
73	Characterization of the polymer of a dipyrrolyl monomer by pyrolysis mass spectrometry. Polymer International, 2004, 53, 1198-1204.	3.1	3
74	Direct pyrolysis mass spectrometry analysis of fresh and aged-doped polythiophenes. Polymer International, 2004, 53, 2162-2168.	3.1	15
75	Structural and thermal characterization of PTSA doped polypyrrole–polytetrahydrofuran graft copolymer. Synthetic Metals, 2004, 140, 69-78.	3.9	9

#	Article	IF	CITATIONS
91	Determination of electron affinity of phenyl radical by dissociative electron attachment technique. Organic Mass Spectrometry, 1993, 28, 285-286.	1.3	1