
Sharad Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1018017/publications.pdf Version: 2024-02-01

SHADAD KIIMAD

#	Article	IF	CITATIONS
1	Loss of NEDD4 causes complete XY gonadal sex reversal in mice. Cell Death and Disease, 2022, 13, 75.	6.3	2
2	Kâ€⊋9 linked ubiquitination of Arrdc4 regulates its function in extracellular vesicle biogenesis. Journal of Extracellular Vesicles, 2022, 11, e12188.	12.2	8
3	The role of caspases as executioners of apoptosis. Biochemical Society Transactions, 2022, 50, 33-45.	3.4	21
4	Global ubiquitinome profiling identifies NEDD4 as a regulator of Profilin 1 and actin remodelling in neural crest cells. Nature Communications, 2022, 13, 2018.	12.8	4
5	Cp1/cathepsin L is required for autolysosomal clearance in <i>Drosophila</i> . Autophagy, 2021, 17, 2734-2749.	9.1	9
6	Retromer regulates the lysosomal clearance of MAPT/tau. Autophagy, 2021, 17, 2217-2237.	9.1	23
7	Phosphorylation by Aurora B kinase regulates caspase-2 activity and function. Cell Death and Differentiation, 2021, 28, 349-366.	11.2	18
8	Retromer dysfunction at the nexus of tauopathies. Cell Death and Differentiation, 2021, 28, 884-899.	11.2	14
9	The Role of Extracellular Vesicles in Sperm Function and Male Fertility. Sub-Cellular Biochemistry, 2021, 97, 483-500.	2.4	13
10	The p53-caspase-2 axis in the cell cycle and DNA damage response. Experimental and Molecular Medicine, 2021, 53, 517-527.	7.7	29
11	The ubiquitin ligase NEDD4-2/NEDD4L regulates both sodium homeostasis and fibrotic signaling to prevent end-stage renal disease. Cell Death and Disease, 2021, 12, 398.	6.3	10
12	Arrdc4â€dependent extracellular vesicle biogenesis is required for sperm maturation. Journal of Extracellular Vesicles, 2021, 10, e12113.	12.2	14
13	Autophagy in major human diseases. EMBO Journal, 2021, 40, e108863.	7.8	615
14	Treatment of Retinoblastoma 1–Intact Hepatocellular Carcinoma With Cyclinâ€Dependent Kinase 4/6 Inhibitor Combination Therapy. Hepatology, 2021, 74, 1971-1993.	7.3	22
15	Adaptors as the regulators of HECT ubiquitin ligases. Cell Death and Differentiation, 2021, 28, 455-472.	11.2	23
16	ATG8ylation of proteins: A way to cope with cell stress?. Journal of Cell Biology, 2021, 220, .	5.2	12
17	Dietary sodium modulates nephropathy in Nedd4-2-deficient mice. Cell Death and Differentiation, 2020, 27, 1832-1843.	11.2	9
18	Ecdysone controlled cell and tissue deletion. Cell Death and Differentiation, 2020, 27, 1-14.	11.2	36

#	Article	IF	CITATIONS
19	Pharmacologically targetable vulnerability in prostate cancer carrying RB1-SUCLA2 deletion. Oncogene, 2020, 39, 5690-5707.	5.9	7
20	TRIM21 Is Targeted for Chaperone-Mediated Autophagy during <i>Salmonella</i> Typhimurium Infection. Journal of Immunology, 2020, 205, 2456-2467.	0.8	18
21	Crosstalk between cGAS–STING signaling and cell death. Cell Death and Differentiation, 2020, 27, 2989-3003.	11.2	79
22	Drosophila as a model to understand autophagy deregulation in human disorders. Progress in Molecular Biology and Translational Science, 2020, 172, 375-409.	1.7	6
23	Arrdc4 Regulates Insulinâ€Stimulated Glucose Metabolism. FASEB Journal, 2020, 34, 1-1.	0.5	1
24	Peripubertal highâ€fat diet promotes câ€Myc stabilization in mammary gland epithelium. Cancer Science, 2020, 111, 2336-2348.	3.9	4
25	Identification of novel interacting partners of the NEDD4 ubiquitin ligase in mouse testis. Journal of Proteomics, 2020, 223, 103830.	2.4	2
26	Dpp regulates autophagy-dependent midgut removal and signals to block ecdysone production. Cell Death and Differentiation, 2019, 26, 763-778.	11.2	40
27	Transcriptome profiling of caspase-2 deficient EμMyc and Th-MYCN mouse tumors identifies distinct putative roles for caspase-2 in neuronal differentiation and immune signaling. Cell Death and Disease, 2019, 10, 56.	6.3	6
28	Crosstalk between Dpp and Tor signaling coordinates autophagy-dependent midgut degradation. Cell Death and Disease, 2019, 10, 111.	6.3	4
29	Ticket to a bubble ride: Cargo sorting into exosomes and extracellular vesicles. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 140203.	2.3	179
30	Autophagy-dependent cell death. Cell Death and Differentiation, 2019, 26, 605-616.	11.2	483
31	Hedgehog and Wingless signaling are not essential for autophagy-dependent cell death. Biochemical Pharmacology, 2019, 162, 3-13.	4.4	6
32	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
33	NEDD4-2-dependent control of Na ⁺ homeostasis and renal disease. Cell Cycle, 2018, 17, 1-2.	2.6	36
34	New insights into apoptosome structure and function. Cell Death and Differentiation, 2018, 25, 1194-1208.	11.2	156
35	Physiological Functions of Nedd4-2: Lessons from Knockout Mouse Models. Trends in Biochemical Sciences, 2018, 43, 635-647.	7.5	59
36	p53 accumulation following cytokinesis failure in the absence of caspase-2. Cell Death and Differentiation, 2018, 25, 2050-2052.	11.2	12

#	Article	IF	CITATIONS
37	Arrestinâ€Domain Containing Protein 1 (Arrdc1) Regulates the Protein Cargo and Release of Extracellular Vesicles. Proteomics, 2018, 18, e1800266.	2.2	41
38	Caspases in metabolic disease and their therapeutic potential. Cell Death and Differentiation, 2018, 25, 1010-1024.	11.2	49
39	Ribophagy: new receptor discovered. Cell Research, 2018, 28, 699-700.	12.0	2
40	NEDD4. , 2018, , 3395-3400.		0
41	NEDD4–2. , 2018, , 3401-3406.		Ο
42	NDFIP1 and NDFIP2. , 2018, , 3390-3395.		0
43	Molecular definitions of autophagy and related processes. EMBO Journal, 2017, 36, 1811-1836.	7.8	1,230
44	Ubiquitination and the Regulation of Membrane Proteins. Physiological Reviews, 2017, 97, 253-281.	28.8	177
45	Caspase-2-mediated cell death is required for deleting aneuploid cells. Oncogene, 2017, 36, 2704-2714.	5.9	57
46	Deletion of Nedd4-2 results in progressive kidney disease in mice. Cell Death and Differentiation, 2017, 24, 2150-2160.	11.2	21
47	Caspase-2 deficiency enhances whole-body carbohydrate utilisation and prevents high-fat diet-induced obesity. Cell Death and Disease, 2017, 8, e3136-e3136.	6.3	20
48	Impaired haematopoietic stem cell differentiation and enhanced skewing towards myeloid progenitors in aged caspase-2-deficient mice. Cell Death and Disease, 2016, 7, e2509-e2509.	6.3	28
49	Caspase-2 deficiency accelerates chemically induced liver cancer in mice. Cell Death and Differentiation, 2016, 23, 1727-1736.	11.2	35
50	Regulation of the divalent metal ion transporter via membrane budding. Cell Discovery, 2016, 2, 16011.	6.7	38
51	The Nedd4-2/Ndfip1 axis is a negative regulator of IgE-mediated mast cell activation. Nature Communications, 2016, 7, 13198.	12.8	29
52	Ndfip2 is a potential regulator of the iron transporter DMT1 in the liver. Scientific Reports, 2016, 6, 24045.	3.3	12
53	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
54	Caspases Connect Cell-Death Signaling to Organismal Homeostasis. Immunity, 2016, 44, 221-231.	14.3	279

#	Article	IF	CITATIONS
55	Learning, memory and long-term potentiation are altered in Nedd4 heterozygous mice. Behavioural Brain Research, 2016, 303, 176-181.	2.2	20
56	NDFIP1 and NDFIP2. , 2016, , 1-6.		0
57	NEDD4–2. , 2016, , 1-6.		Ο
58	Ecdysone-mediated programmed cell death in Drosophila. International Journal of Developmental Biology, 2015, 59, 23-32.	0.6	41
59	Analyzing the Response of RNAi-TreatedDrosophilaCells to Death Stimuli by Quantitative Real-Time Polymerase Chain Reaction. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot086223.	0.3	1
60	Caspase-2 and the oxidative stress response. Molecular and Cellular Oncology, 2015, 2, e1004956.	0.7	6
61	NEDD4-2 (NEDD4L): The ubiquitin ligase for multiple membrane proteins. Gene, 2015, 557, 1-10.	2.2	130
62	Caspase-2 protects against oxidative stress in vivo. Oncogene, 2015, 34, 4995-5002.	5.9	31
63	NEDD4: The founding member of a family of ubiquitin-protein ligases. Gene, 2015, 557, 113-122.	2.2	126
64	Autophagy in malignant transformation and cancer progression. EMBO Journal, 2015, 34, 856-880.	7.8	1,012
65	Immunostaining Using an Antibody against Active Caspase-3 to Detect Apoptotic Cells in <i>Drosophila</i> . Cold Spring Harbor Protocols, 2015, 2015, pdb.prot086215.	0.3	4
66	Using the Vital Dye Acridine Orange to Detect Dying Cells in <i>Drosophila</i> . Cold Spring Harbor Protocols, 2015, 2015, pdb.prot086207.	0.3	8
67	Using Synthetic Peptide Substrates to Measure <i>Drosophila</i> Caspase Activity. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot086231.	0.3	1
68	Studying Apoptosis inDrosophila: Figure 1 Cold Spring Harbor Protocols, 2015, 2015, pdb.top070433.	0.3	8
69	Distinct requirements of Autophagy-related genes in programmed cell death. Cell Death and Differentiation, 2015, 22, 1792-1802.	11.2	56
70	Terminal Deoxynucleotidyl Transferase (TdT)-Mediated dUTP Nick-End Labeling (TUNEL) for Detection of Apoptotic Cells in <i>Drosophila</i> . Cold Spring Harbor Protocols, 2015, 2015, pdb.prot086199.	0.3	14
71	Age-related proteostasis and metabolic alterations in Caspase-2-deficient mice. Cell Death and Disease, 2015, 6, e1615-e1615.	6.3	39
72	The tumor-modulatory effects of Caspase-2 and Pidd1 do not require the scaffold protein Raidd. Cell Death and Differentiation, 2015, 22, 1803-1811.	11.2	20

#	Article	IF	CITATIONS
73	Old, new and emerging functions of caspases. Cell Death and Differentiation, 2015, 22, 526-539.	11.2	1,000
74	Autophagy as a proâ€death pathway. Immunology and Cell Biology, 2015, 93, 35-42.	2.3	143
75	Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death and Differentiation, 2015, 22, 58-73.	11.2	811
76	A single cut to pyroptosis. Oncotarget, 2015, 6, 36926-36927.	1.8	18
77	An unexpected role for caspase-2 in neuroblastoma. Cell Death and Disease, 2014, 5, e1383-e1383.	6.3	21
78	Nedd4-2 (NEDD4L) controls intracellular Na+-mediated activity of voltage-gated sodium channels in primary cortical neurons. Biochemical Journal, 2014, 457, 27-31.	3.7	37
79	Ndfip1 mediates peripheral tolerance to self and exogenous antigen by inducing cell cycle exit in responding CD4 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2067-2074.	7.1	25
80	Subtle gait abnormalities in Nedd4 heterozygous mice. Behavioural Brain Research, 2014, 260, 15-24.	2.2	10
81	ER stress does not cause upregulation and activation of caspase-2 to initiate apoptosis. Cell Death and Differentiation, 2014, 21, 475-480.	11.2	49
82	Mammalian HECT ubiquitin-protein ligases: Biological and pathophysiological aspects. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 61-74.	4.1	241
83	Caspase-2 Protocols. Methods in Molecular Biology, 2014, 1133, 71-87.	0.9	7
84	Developmentally programmed cell death in Drosophila. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3499-3506.	4.1	64
85	Caspase-2 as a tumour suppressor. Cell Death and Differentiation, 2013, 20, 1133-1139.	11.2	85
86	The ubiquitin ligase Nedd4 regulates craniofacial development by promoting cranial neural crest cell survival and stem-cell like properties. Developmental Biology, 2013, 383, 186-200.	2.0	57
87	The histone deacetylase SIRT2 stabilizes Myc oncoproteins. Cell Death and Differentiation, 2013, 20, 503-514.	11.2	171
88	Loss of <i>caspase-2</i> augments lymphomagenesis and enhances genomic instability in <i>Atm</i> -deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19920-19925.	7.1	65
89	Genetic background and tumour susceptibility in mouse models. Cell Death and Differentiation, 2013, 20, 964-964.	11.2	12
90	UTX coordinates steroid hormone-mediated autophagy and cell death. Nature Communications, 2013, 4, 2916.	12.8	50

#	Article	IF	CITATIONS
91	Insect Caspases. , 2013, , 2286-2295.		1
92	Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension. Journal of Clinical Investigation, 2013, 123, 657-65.	8.2	120
93	Prevalence of ocular signs and subclinical vitamin A deficiency and its determinants among rural pre-school children in India. Public Health Nutrition, 2012, 15, 568-577.	2.2	38
94	Ndfip1 regulates nuclear Pten import in vivo to promote neuronal survival following cerebral ischemia. Journal of Cell Biology, 2012, 196, 29-36.	5.2	99
95	Cell death by autophagy: facts and apparent artefacts. Cell Death and Differentiation, 2012, 19, 87-95.	11.2	334
96	Caspase-2 deficiency promotes aberrant DNA-damage response and genetic instability. Cell Death and Differentiation, 2012, 19, 1288-1298.	11.2	90
97	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
98	Impaired antioxidant defence and accumulation of oxidative stress in caspase-2-deficient mice. Cell Death and Differentiation, 2012, 19, 1370-1380.	11.2	69
99	Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death and Differentiation, 2012, 19, 107-120.	11.2	2,144
100	Relationship between growth arrest and autophagy in midgut programmed cell death in Drosophila. Cell Death and Differentiation, 2012, 19, 1299-1307.	11.2	77
101	lsoform specific regulation of divalent metal (ion) transporter (DMT1) by proteasomal degradation. BioMetals, 2012, 25, 787-793.	4.1	36
102	Ndfip1-deficient mice have impaired DMT1 regulation and iron homeostasis. Blood, 2011, 117, 638-646.	1.4	43
103	Drosophila Ndfip is a novel regulator of Notch signaling. Cell Death and Differentiation, 2011, 18, 1150-1160.	11.2	25
104	Structure of the Drosophila Apoptosome at 6.9ÂÃ Resolution. Structure, 2011, 19, 128-140.	3.3	73
105	Respiratory distress and perinatal lethality in Nedd4-2-deficient mice. Nature Communications, 2011, 2, 287.	12.8	85
106	Regulation of the Epithelial Na+ Channel by the RH Domain of G Protein-coupled Receptor Kinase, GRK2, and Gαq/11. Journal of Biological Chemistry, 2011, 286, 19259-19269.	3.4	11
107	Blocking cytokine signaling along with intense Bcr-Abl kinase inhibition induces apoptosis in primary CML progenitors. Leukemia, 2010, 24, 771-778.	7.2	50
108	Nedd4 and Nedd4-2: closely related ubiquitin-protein ligases with distinct physiological functions. Cell Death and Differentiation, 2010, 17, 68-77.	11.2	198

#	Article	IF	CITATIONS
109	An essential function for the centrosomal protein NEDD1 in zebrafish development. Cell Death and Differentiation, 2010, 17, 1302-1314.	11.2	16
110	A potential role for NEDD1 and the centrosome in senescence of mouse embryonic fibroblasts. Cell Death and Disease, 2010, 1, e35-e35.	6.3	29
111	Larval midgut destruction in Drosophila: Not dependent on caspases but suppressed by the loss of autophagy, 2010, 6, 163-165.	9.1	53
112	A Direct Interaction with NEDD1 Regulates Î ³ -Tubulin Recruitment to the Centrosome. PLoS ONE, 2010, 5, e9618.	2.5	36
113	A tumor suppressor function for caspase-2. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5336-5341.	7.1	151
114	The Activity of the Epithelial Sodium Channels Is Regulated by Caveolin-1 via a Nedd4-2-dependent Mechanism. Journal of Biological Chemistry, 2009, 284, 12663-12669.	3.4	48
115	Divalent metal transporter 1 (DMT1) regulation by Ndfip1 prevents metal toxicity in human neurons. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15489-15494.	7.1	102
116	Autophagy, Not Apoptosis, Is Essential for Midgut Cell Death in Drosophila. Current Biology, 2009, 19, 1741-1746.	3.9	337
117	Short-term intense Bcr–Abl kinase inhibition with nilotinib is adequate to trigger cell death in BCR-ABL+ cells. Leukemia, 2009, 23, 1205-1206.	7.2	14
118	Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death and Differentiation, 2009, 16, 3-11.	11.2	2,572
119	Chemokine receptors CXCR4 and CCR7 promote metastasis by preventing anoikis in cancer cells. Cell Death and Differentiation, 2009, 16, 664-673.	11.2	81
120	Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death and Differentiation, 2009, 16, 1093-1107.	11.2	599
121	Caspase 2 in apoptosis, the DNA damage response and tumour suppression: enigma no more?. Nature Reviews Cancer, 2009, 9, 897-903.	28.4	122
122	Physiological functions of the HECT family of ubiquitin ligases. Nature Reviews Molecular Cell Biology, 2009, 10, 398-409.	37.0	888
123	Analysing Caspase Activation and Caspase Activity in Apoptotic Cells. Methods in Molecular Biology, 2009, 559, 3-17.	0.9	14
124	Putative functions of caspase-2. F1000 Biology Reports, 2009, 1, 96.	4.0	2
125	Nedd1 expression as a marker of dynamic centrosomal localization during mouse embryonic development. Histochemistry and Cell Biology, 2008, 129, 751-764.	1.7	14
126	Caspase-2 is required for cell death induced by cytoskeletal disruption. Oncogene, 2008, 27, 3393-3404.	5.9	119

#	Article	IF	CITATIONS
127	A biochemical analysis of the activation of the Drosophila caspase DRONC. Cell Death and Differentiation, 2008, 15, 461-470.	11.2	53
128	Chapter 2 Methods and Protocols for Studying Cell Death in Drosophila. Methods in Enzymology, 2008, 446, 17-37.	1.0	31
129	Nedd4 Controls Animal Growth by Regulating IGF-1 Signaling. Science Signaling, 2008, 1, ra5.	3.6	148
130	Nedd4 Family-interacting Protein 1 (Ndfip1) Is Required for the Exosomal Secretion of Nedd4 Family Proteins. Journal of Biological Chemistry, 2008, 283, 32621-32627.	3.4	126
131	The Ubiquitin-Protein Ligase Nedd4-2 Differentially Interacts with and Regulates Members of the Tweety Family of Chloride Ion Channels. Journal of Biological Chemistry, 2008, 283, 24000-24010.	3.4	30
132	dLKR/SDH regulates hormone-mediated histone arginine methylation and transcription of cell death genes. Journal of Cell Biology, 2008, 182, 481-495.	5.2	25
133	Regulation of the voltage-gated K ⁺ channels KCNQ2/3 and KCNQ3/5 by serum- and glucocorticoid-regulated kinase-1. American Journal of Physiology - Cell Physiology, 2008, 295, C73-C80.	4.6	26
134	Dasatinib Cellular Uptake and Efflux in Chronic Myeloid Leukemia Cells: Therapeutic Implications. Clinical Cancer Research, 2008, 14, 3881-3888.	7.0	169
135	Regulation of the divalent metal ion transporter DMT1 and iron homeostasis by a ubiquitin-dependent mechanism involving Ndfips and WWP2. Blood, 2008, 112, 4268-4275.	1.4	122
136	Regulation of the Voltage-gated K+ Channels KCNQ2/3 and KCNQ3/5 by Ubiquitination. Journal of Biological Chemistry, 2007, 282, 12135-12142.	3.4	82
137	Akt Mediates the Effect of Insulin on Epithelial Sodium Channels by Inhibiting Nedd4-2. Journal of Biological Chemistry, 2007, 282, 29866-29873.	3.4	125
138	GRK2 interacts with and phosphorylates Nedd4 and Nedd4-2. Biochemical and Biophysical Research Communications, 2007, 359, 611-615.	2.1	29
139	NEDD1: Function in microtubule nucleation, spindle assembly and beyond. International Journal of Biochemistry and Cell Biology, 2007, 39, 7-11.	2.8	20
140	Caspase function in programmed cell death. Cell Death and Differentiation, 2007, 14, 32-43.	11.2	711
141	Caspases and their many biological functions. Cell Death and Differentiation, 2007, 14, 1-2.	11.2	16
142	Molecular determinants of the subcellular localization of the Drosophila Bcl-2 homologues DEBCL and BUFFY. Cell Death and Differentiation, 2007, 14, 907-915.	11.2	27
143	NEDD4-2as a potential candidate susceptibility gene for epileptic photosensitivity. Genes, Brain and Behavior, 2007, 6, 750-755.	2.2	56
144	The ubiquitin-protein ligases Nedd4 and Nedd4-2 show similar ubiquitin-conjugating enzyme specificities. International Journal of Biochemistry and Cell Biology, 2006, 38, 472-479.	2.8	24

#	Article	IF	CITATIONS
145	A cytochrome c-free fly apoptosome. Cell Death and Differentiation, 2006, 13, 1049-1051.	11.2	25
146	Stimulation of the epithelial sodium channel (ENaC) by the serum- and glucocorticoid-inducible kinase (Sgk) involves the PY motifs of the channel but is independent of sodium feedback inhibition. Pflugers Archiv European Journal of Physiology, 2006, 452, 290-299.	2.8	27
147	Regulation of functional diversity within the Nedd4 family by accessory and adaptor proteins. BioEssays, 2006, 28, 617-628.	2.5	141
148	The Drosophila melanogaster Apaf-1 homologue ARK is required for most, but not all, programmed cell death. Journal of Cell Biology, 2006, 172, 809-815.	5.2	60
149	Nedd4-WW Domain-Binding Protein 5 (Ndfip1) Is Associated with Neuronal Survival after Acute Cortical Brain Injury. Journal of Neuroscience, 2006, 26, 7234-7244.	3.6	49
150	The Biology of Caspases. , 2006, , 347-362.		0
151	Crystallization and preliminary X-ray diffraction studies of the WW4 domain of the Nedd4-2 ubiquitin–protein ligase. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 1084-1086.	0.7	5
152	Programmed Cell Death inDrosophila Melanogaster. , 2005, , 79-97.		1
153	Ecdysone-mediated Up-regulation of the Effector Caspase DRICE Is Required for Hormone-dependent Apoptosis in Drosophila Cells. Journal of Biological Chemistry, 2005, 280, 11981-11986.	3.4	54
154	The Function of the Drosophila Caspase DRONC in Cell Death and Development. Cell Cycle, 2005, 4, 744-746.	2.6	13
155	Measurement of Caspase Activity in Cells Undergoing Apoptosis. , 2004, 282, 019-030.		12
156	The two cytochrome c species, DC3 and DC4, are not required for caspase activation and apoptosis in Drosophila cells. Journal of Cell Biology, 2004, 167, 405-410.	5.2	113
157	Nedd4-2 Functionally Interacts with ClC-5. Journal of Biological Chemistry, 2004, 279, 54996-55007.	3.4	83
158	Ecdysone receptor directly binds the promoter of the Drosophila caspase dronc, regulating its expression in specific tissues. Journal of Cell Biology, 2004, 165, 631-640.	5.2	89
159	The kinase Grk2 regulates Nedd4/Nedd4-2-dependent control of epithelial Na+ channels. Proceedings of the United States of America, 2004, 101, 11886-11890.	7.1	73
160	Grb10 Prevents Nedd4-mediated Vascular Endothelial Growth Factor Receptor-2 Degradation. Journal of Biological Chemistry, 2004, 279, 26754-26761.	3.4	119
161	N4WBP5A (Ndfip2), a Nedd4-interacting protein, localizes to multivesicular bodies and the Golgi, and has a potential role in protein trafficking. Journal of Cell Science, 2004, 117, 3679-3689.	2.0	63
162	Apaf-1 and caspase-9 accelerate apoptosis, but do not determine whether factor-deprived or drug-treated cells die. Journal of Cell Biology, 2004, 165, 835-842.	5.2	169

#	Article	IF	CITATIONS
163	An Arginine-Histone Methyltransferase, CARMER, Coordinates Ecdysone-mediated Apoptosis in Drosophila Cells. Journal of Biological Chemistry, 2004, 279, 18467-18471.	3.4	31
164	Regulation of Neuronal Voltage-gated Sodium Channels by the Ubiquitin-Protein Ligases Nedd4 and Nedd4-2. Journal of Biological Chemistry, 2004, 279, 28930-28935.	3.4	138
165	The biochemical mechanism of caspase-2 activation. Cell Death and Differentiation, 2004, 11, 1234-1241.	11.2	181
166	Transcriptional control of the core cell-death machinery. Trends in Biochemical Sciences, 2004, 29, 193-199.	7.5	64
167	The Apical Caspase dronc Governs Programmed and Unprogrammed Cell Death in Drosophila. Developmental Cell, 2004, 7, 897-907.	7.0	140
168	Drosophila Caspase DRONC Is Required for Specific Developmental Cell Death Pathways and Stress-Induced Apoptosis. Developmental Cell, 2004, 7, 909-915.	7.0	159
169	Migrate, Differentiate, Proliferate, or Die: Pleiotropic Functions of an Apical "Apoptotic Caspase". Science Signaling, 2004, 2004, pe49-pe49.	3.6	14
170	Buffy, a Drosophila Bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions. EMBO Journal, 2003, 22, 3568-3579.	7.8	121
171	Apaf-1/cytochrome c apoptosome: an essential initiatorof caspase activation or just a sideshow?. Cell Death and Differentiation, 2003, 10, 16-18.	11.2	101
172	Distinct promoter regions regulate spatial and temporal expression of the Drosophila caspase dronc. Cell Death and Differentiation, 2003, 10, 1348-1356.	11.2	33
173	Role of Prodomain in Importin-mediated Nuclear Localization and Activation of Caspase-2. Journal of Biological Chemistry, 2003, 278, 4899-4905.	3.4	96
174	The role of individual Nedd4–2 (KIAAO439) WW domains in binding and regulating epithelial sodium channels. FASEB Journal, 2003, 17, 70-72.	0.5	96
175	Enhancing DNA vaccine potency by coadministration of DNA encoding antiapoptotic proteins. Journal of Clinical Investigation, 2003, 112, 109-117.	8.2	73
176	Enhancing DNA vaccine potency by coadministration of DNA encoding antiapoptotic proteins. Journal of Clinical Investigation, 2003, 112, 109-117.	8.2	142
177	A novel Apaf-1–independent putative caspase-2 activation complex. Journal of Cell Biology, 2002, 159, 739-745.	5.2	151
178	APOPTOSIS: A Cinderella Caspase Takes Center Stage. Science, 2002, 297, 1290-1291.	12.6	111
179	Ecdysone-induced expression of the caspase DRONC during hormone-dependent programmed cell death in Drosophila is regulated by Broad-Complex. Journal of Cell Biology, 2002, 157, 985-996.	5.2	100
180	Regulation of the Epithelial Sodium Channel by N4WBP5A, a Novel Nedd4/Nedd4-2-interacting Protein. Journal of Biological Chemistry, 2002, 277, 29406-29416.	3.4	85

#	Article	IF	CITATIONS
181	N4WBP5, a Potential Target for Ubiquitination by the Nedd4 Family of Proteins, Is a Novel Golgi-associated Protein. Journal of Biological Chemistry, 2002, 277, 9307-9317.	3.4	106
182	The role of cytochrome c in caspase activation in Drosophila melanogaster cells. Journal of Cell Biology, 2002, 156, 1089-1098.	5.2	178
183	Patch-Clamp Studies on Epithelial Sodium Channels in Salivary Duct Cells. Cell Biochemistry and Biophysics, 2002, 36, 105-114.	1.8	24
184	Death to flies: Drosophila as a model system to study programmed cell death. Journal of Immunological Methods, 2002, 265, 21-38.	1.4	93
185	Role of Bcl-2 family of proteins in malignancy. Hematological Oncology, 2002, 20, 63-74.	1.7	78
186	Caspase-2 is not required for thymocyte or neuronal apoptosis even though cleavage of caspase-2 is dependent on both Apaf-1 and caspase-9. Cell Death and Differentiation, 2002, 9, 832-841.	11.2	170
187	Substrate proteolysis is inhibited by dominant-negative Nedd4 and Rsp5 mutants harboring alterations in WW domain 1. Journal of Cell Science, 2002, 115, 1041-1048.	2.0	17
188	Substrate proteolysis is inhibited by dominant-negative Nedd4 and Rsp5 mutants harboring alterations in WW domain 1. Journal of Cell Science, 2002, 115, 1041-8.	2.0	16
189	Chimeric Caspase Molecules with Potent Cell Killing Activity in Apoptosis-Resistant Cells. Biochemical and Biophysical Research Communications, 2001, 282, 1114-1119.	2.1	5
190	STRICA, a novel Drosophila melanogaster caspase with an unusual serine/threonine-rich prodomain, interacts with DIAP1 and DIAP2. Cell Death and Differentiation, 2001, 8, 387-394.	11.2	73
191	The Nedd4-like Protein KIAA0439 Is a Potential Regulator of the Epithelial Sodium Channel. Journal of Biological Chemistry, 2001, 276, 8597-8601.	3.4	135
192	Roles of the C Termini of α-, β-, and γ-Subunits of Epithelial Na+ Channels (ENaC) in Regulating ENaC and Mediating Its Inhibition by Cytosolic Na+. Journal of Biological Chemistry, 2001, 276, 13744-13749.	3.4	24
193	Characterization of the DrosophilaCaspase, DAMM. Journal of Biological Chemistry, 2001, 276, 25342-25350.	3.4	79
194	Identification of multiple proteins expressed in murine embryos as binding partners for the WW domains of the ubiquitin-protein ligase Nedd4. Biochemical Journal, 2000, 351, 557.	3.7	34
195	Identification of multiple proteins expressed in murine embryos as binding partners for the WW domains of the ubiquitin-protein ligase Nedd4. Biochemical Journal, 2000, 351, 557-565.	3.7	99
196	All three WW domains of murine Nedd4 are involved in the regulation of the Epithelial Sodium Channel. Biochemical Society Transactions, 2000, 28, A453-A453.	3.4	0
197	An Essential Role for the Caspase Dronc in Developmentally Programmed Cell Death in Drosophila. Journal of Biological Chemistry, 2000, 275, 40416-40424.	3.4	137
198	Debcl, a Proapoptotic Bcl-2 Homologue, Is a Component of the Drosophila melanogaster Cell Death Machinery. Journal of Cell Biology, 2000, 148, 703-714.	5.2	161

#	Article	IF	CITATIONS
199	mGrb10 Interacts with Nedd4. Journal of Biological Chemistry, 1999, 274, 24094-24099.	3.4	93
200	Na+-H+ exchange in salivary secretory cells is controlled by an intracellular Na+ receptor. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 9949-9953.	7.1	27
201	Caspases in Developmental Cell Death. IUBMB Life, 1999, 48, 143-150.	3.4	2
202	DECAY, a Novel Drosophila Caspase Related to Mammalian Caspase-3 and Caspase-7. Journal of Biological Chemistry, 1999, 274, 30778-30783.	3.4	110
203	All Three WW Domains of Murine Nedd4 Are Involved in the Regulation of Epithelial Sodium Channels by Intracellular Na+. Journal of Biological Chemistry, 1999, 274, 12525-12530.	3.4	114
204	DRONC, an ecdysone-inducible Drosophila caspase. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 4307-4312.	7.1	271
205	REGULATION OF CASPASE ACTIVATION IN APOPTOSIS: IMPLICATIONS IN PATHOGENESIS AND TREATMENT OF DISEASE. Clinical and Experimental Pharmacology and Physiology, 1999, 26, 295-303.	1.9	57
206	Targeted disruption of caspase genes in mice: What they tell us about the functions of individual caspases in apoptosis. Immunology and Cell Biology, 1999, 77, 58-63.	2.3	50
207	Caspases in Developmental Cell Death. IUBMB Life, 1999, 48, 143-150.	3.4	3
208	Nedd4-like proteins: an emerging family of ubiquitin-protein ligases implicated in diverse cellular functions. Trends in Cell Biology, 1999, 9, 166-169.	7.9	189
209	Prodomains – adaptors – oligomerization: the pursuit of caspase activation in apoptosis. Trends in Biochemical Sciences, 1999, 24, 1-4.	7.5	102
210	Calpain activation is upstream of caspases in radiation-induced apoptosis. Cell Death and Differentiation, 1998, 5, 1051-1061.	11.2	168
211	Identification of Septins in Neurofibrillary Tangles in Alzheimer's Disease. American Journal of Pathology, 1998, 153, 1551-1560.	3.8	133
212	Prodomain-dependent Nuclear Localization of the Caspase-2 (Nedd2) Precursor. Journal of Biological Chemistry, 1998, 273, 24535-24542.	3.4	140
213	Dimerization and Autoprocessing of the Nedd2 (Caspase-2) Precursor Requires both the Prodomain and the Carboxyl-terminal Regions. Journal of Biological Chemistry, 1998, 273, 6763-6768.	3.4	101
214	Conversion of Procaspase-3 to an Autoactivating Caspase by Fusion to the Caspase-2 Prodomain. Journal of Biological Chemistry, 1998, 273, 26566-26570.	3.4	70
215	Caspase-mediated Cleavage of the Ubiquitin-protein Ligase Nedd4 during Apoptosis. Journal of Biological Chemistry, 1998, 273, 13524-13530.	3.4	65
216	Nedd4 mediates control of an epithelial Na+ channel in salivary duct cells by cytosolic Na+. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7169-7173.	7.1	135

#	Article	IF	CITATIONS
217	Selective Regulation of Apoptosis: the Cytotoxic Lymphocyte Serpin Proteinase Inhibitor 9 Protects against Granzyme B-Mediated Apoptosis without Perturbing the Fas Cell Death Pathway. Molecular and Cellular Biology, 1998, 18, 6387-6398.	2.3	267
218	The role of caspases in apoptosis. Advances in Biochemical Engineering/Biotechnology, 1998, 62, 107-128.	1.1	24
219	Caspases in Cell Death. Results and Problems in Cell Differentiation, 1998, 24, 1-24.	0.7	8
220	Functional Activation of Nedd2/ICH-1 (Caspase-2) Is an Early Process in Apoptosis. Journal of Biological Chemistry, 1997, 272, 13134-13139.	3.4	127
221	The Apoptosis-inducing Granulocyte-Macrophage Colony-stimulating Factor (GM-CSF) Analog E21R Functions through Specific Regions of the Heterodimeric GM-CSF Receptor and Requires Interleukin-11²-converting Enzyme-like Proteases. Journal of Biological Chemistry, 1997, 272, 9877-9883.	3.4	14
222	Recombinant Caspase-3 Expressed inPichia pastorisIs Fully Activated and Kinetically Indistinguishable from the Native Enzyme. Biochemical and Biophysical Research Communications, 1997, 238, 920-924.	2.1	30
223	cDNA Cloning, Expression Analysis, and Mapping of the MouseNedd4Gene. Genomics, 1997, 40, 435-443.	2.9	142
224	The apoptotic cysteine protease CPP32. International Journal of Biochemistry and Cell Biology, 1997, 29, 393-396.	2.8	66
225	The Bcl-2 family of proteins and activation of the ICE-CED-3 family of proteases: A balancing act in apoptosis?. Cell Death and Differentiation, 1997, 4, 2-3.	11.2	17
226	Death in Capri - The Fourth Euroconference on Apoptosis. Cell Death and Differentiation, 1997, 4, 343-346.	11.2	0
227	Origin, expression and possible functions of the two alternatively spliced forms of the mouse Nedd2 mRNA. Cell Death and Differentiation, 1997, 4, 378-387.	11.2	29
228	Differential inhibitory effects of CrmA, P35, IAP and three mammalian IAP homologues on apoptosis in NIH3T3 cells following various death stimuli. Cell Death and Differentiation, 1997, 4, 570-579.	11.2	24
229	Up-Regulation of the Nedd2 Gene Encoding an ICE/Ced-3-Like Cysteine Protease in the Gerbil Brain after Transient Global Ischemia. Journal of Cerebral Blood Flow and Metabolism, 1997, 17, 507-514.	4.3	63
230	SPECIFIC CLEAVAGE OF hnRNP C PROTEINS IN APOPTOSIS. Biochemical Society Transactions, 1996, 24, 565S-565S.	3.4	0
231	Processing of the Nedd2 precursor by ICEâ€like proteases and granzyme B. Genes To Cells, 1996, 1, 673-685.	1.2	63
232	Heteronuclear Ribonucleoproteins C1 and C2, Components of the Spliceosome, Are Specific Targets of Interleukin 1β-converting Enzyme-like Proteases in Apoptosis. Journal of Biological Chemistry, 1996, 271, 29335-29341.	3.4	113
233	ICE-like proteases in apoptosis. Trends in Biochemical Sciences, 1995, 20, 198-202.	7.5	357
234	Apoptosis regulatory gene NEDD2 maps to human chromosome segment 7q34?35, a region frequently affected in haematological neoplasms. Human Genetics, 1995, 95, 641-4.	3.8	41

#	Article	IF	CITATIONS
235	Assignment of the developmentally regulated gene NEDD1 to human chromosome 12q22 by fluorescence in situ hybridization. Human Genetics, 1995, 95, 96-8.	3.8	3
236	Inhibition of apoptosis by the expression of antisenseNedd2. FEBS Letters, 1995, 368, 69-72.	2.8	52
237	Role of multiple cellular proteases in the execution of programmed cell death. FEBS Letters, 1995, 375, 169-173.	2.8	130
238	Cloning of a cDNA Which Encodes a Novel Ubiquitin-like Protein. Biochemical and Biophysical Research Communications, 1993, 195, 393-399.	2.1	126
239	DRG: A novel developmentally regulated GTP-binding protein. Biochemical and Biophysical Research Communications, 1992, 189, 363-370.	2.1	57
240	Expression of DRG during murine embryonic development. Biochemical and Biophysical Research Communications, 1992, 189, 371-377.	2.1	36
241	Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochemical and Biophysical Research Communications, 1992, 185, 1155-1161.	2.1	508
242	Identification of a developmentally regulated gene in the mouse central nervous system which encodes a novel proline rich protein. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1992, 1132, 240-248.	2.4	8
243	A poxvirus bidirectional promoter element with early/late and late functions. Virology, 1990, 179, 151-158.	2.4	32
244	Activity of a fowlpox virus late gene promoter in vaccinia and fowlpox virus recombinants. Archives of Virology, 1990, 112, 139-148.	2.1	11
245	Expression of bovine leukaemia virus envelope gene by recombinant vaccinia viruses. Virus Research, 1990, 17, 131-142.	2.2	11
246	Mapping of a major early/late gene of fowlpox virus. Virus Research, 1990, 15, 175-185.	2.2	11
247	Comparative analysis of vaccinia virus promoter activity in fowlpox and vaccinia virus recombinants. Virus Research, 1990, 16, 43-57.	2.2	18
248	Cell death by apoptosis in acute leukaemia. Journal of Pathology, 1989, 158, 123-129.	4.5	63
249	Immunoglobulin Synthesis and Gene Rearrangement in Ataxia-Telangiectasia B-Lymphoblastoid Cell Lines. International Archives of Allergy and Immunology, 1989, 89, 264-268.	2.1	2
250	Cloning of a Major Repeat DNA Sequence from Pyura stolonifera. DNA and Cell Biology, 1988, 7, 433-439.	5.2	7
251	A defect in DNA topoisomerase II activity in ataxia-telangiectasia cells. Biochemical and Biophysical Research Communications, 1987, 149, 233-238.	2.1	21
252	Coupling of histone mRNA levels to radioresistant DNA synthesis in ataxia-telangiectasia cells. Molecular and Cellular Biochemistry, 1987, 73, 45-54.	3.1	7

#	Article	IF	CITATIONS
253	Rearrangements of t-cell receptor β-chain genes in human leukaemias. Molecular Immunology, 1986, 23, 1349-1356.	2.2	3
254	Na+ and K+ transport in Nitrosomonas europaea and Nitrobacter agilis. Biochimica Et Biophysica Acta - Bioenergetics, 1984, 765, 268-274.	1.0	3
255	Definitive15N NMR evidence that water serves as a source of â€~O' during nitrite oxidation byNitrobacter agilis. FEBS Letters, 1983, 152, 71-74.	2.8	106
256	Proton Electrochemical Gradients in Washed Cells of Nitrosomonas europaea and Nitrobacter agilis. Journal of Bacteriology, 1983, 154, 65-71.	2.2	27
257	Oxygen-dependent nitrite uptake and nitrate production by cells, spheroplasts and membrane vesicles ofNitrobacter agilis. FEMS Microbiology Letters, 1981, 11, 201-206.	1.8	10
258	Caspase 2 in apoptosis, the DNA damage response and tumour suppression: enigma no more?. Nature Reviews Cancer, 0, , .	28.4	0