Thomas W Gettys

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1017464/publications.pdf

Version: 2024-02-01

53794 71685 6,739 116 45 76 citations h-index g-index papers 116 116 116 6827 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Prolonged effects of DPP-4 inhibitors on steato-hepatitic changes in Sprague–Dawley rats fed a high-cholesterol diet. Inflammation Research, 2022, , .	4.0	O
2	The Origins, Evolution, and Future of Dietary Methionine Restriction. Annual Review of Nutrition, 2022, 42, 201-226.	10.1	13
3	Physiologic Responses to Dietary Sulfur Amino Acid Restriction in Mice Are Influenced by Atf4 Status and Biological Sex. Journal of Nutrition, 2021, 151, 785-799.	2.9	24
4	The acute transcriptional responses to dietary methionine restriction are triggered by inhibition of ternary complex formation and linked to $Erk1/2$, mTOR, and ATF4. Scientific Reports, 2021, 11, 3765.	3.3	16
5	Hepatic Nfe2l2 Is Not an Essential Mediator of the Metabolic Phenotype Produced by Dietary Methionine Restriction. Nutrients, 2021, 13, 1788.	4.1	5
6	Implementation of dietary methionine restriction using casein after selective, oxidative deletion of methionine. IScience, 2021, 24, 102470.	4.1	8
7	The Role of Reduced Methionine in Mediating the Metabolic Responses to Protein Restriction Using Different Sources of Protein. Nutrients, 2021, 13, 2609.	4.1	7
8	FGF21 prevents low-protein diet-induced renal inflammation in aged mice. American Journal of Physiology - Renal Physiology, 2021, 321, F356-F368.	2.7	8
9	Nutritional Regulation of Hepatic FGF21 by Dietary Restriction of Methionine. Frontiers in Endocrinology, 2021, 12, 773975.	3.5	10
10	Dietary Methionine Restriction Signals to the Brain Through Fibroblast Growth Factor 21 to Regulate Energy Balance and Remodeling of Adipose Tissue. Obesity, 2020, 28, 1912-1921.	3.0	23
11	High levels of dietary methionine improves sitagliptin-induced hepatotoxicity by attenuating oxidative stress in hypercholesterolemic rats. Nutrition and Metabolism, 2020, 17, 2.	3.0	14
12	Sexually Dimorphic Effects of Dietary Methionine Restriction are Dependent on Age when the Diet is Introduced. Obesity, 2020, 28, 581-589.	3.0	27
13	Dietary Methionine Restriction Reduces Inflammation Independent of FGF21 Action. Obesity, 2019, 27, 1305-1313.	3.0	32
14	The incretin enhancer, sitagliptin, exacerbates expression of hepatic inflammatory markers in rats fed a high-cholesterol diet. Inflammation Research, 2019, 68, 581-595.	4.0	6
15	An Optimized Immunoblotting Protocol for Accurate Detection of Endogenous PGC-1α Isoforms in Various Rodent Tissues. Methods in Molecular Biology, 2019, 1966, 7-16.	0.9	1
16	The Components of Ageâ€Dependent Effects of Dietary Methionine Restriction on Energy Balance in Rats. Obesity, 2018, 26, 740-746.	3.0	29
17	Sensing and signaling mechanisms linking dietary methionine restriction to the behavioral and physiological components of the response. Frontiers in Neuroendocrinology, 2018, 51, 36-45.	5.2	21
18	The role of suppression of hepatic SCD1 expression in the metabolic effects of dietary methionine restriction. Applied Physiology, Nutrition and Metabolism, 2018, 43, 123-130.	1.9	6

#	Article	IF	Citations
19	Roux-en-Y Gastric Bypass Surgery-Induced Weight Loss and Metabolic Improvements Are Similar in TGR5-Deficient and Wildtype Mice. Obesity Surgery, 2018, 28, 3227-3236.	2.1	30
20	FGF21 Mediates the Thermogenic and Insulin-Sensitizing Effects of Dietary Methionine Restriction but Not Its Effects on Hepatic Lipid Metabolism. Diabetes, 2017, 66, 858-867.	0.6	109
21	Concentrationâ€dependent linkage of dietary methionine restriction to the components of its metabolic phenotype. Obesity, 2017, 25, 730-738.	3.0	61
22	Dietary Methionine Restriction Regulates Liver Protein Synthesis and Gene Expression Independently of Eukaryotic Initiation Factor 2 Phosphorylation in Mice. Journal of Nutrition, 2017, 147, 1031-1040.	2.9	39
23	An integrative analysis of tissue-specific transcriptomic and metabolomic responses to short-term dietary methionine restriction in mice. PLoS ONE, 2017, 12, e0177513.	2.5	33
24	The metabolism and significance of homocysteine in nutrition and health. Nutrition and Metabolism, 2017, 14, 78.	3.0	226
25	Role of GCN2-Independent Signaling Through a Noncanonical PERK/NRF2 Pathway in the Physiological Responses to Dietary Methionine Restriction. Diabetes, 2016, 65, 1499-1510.	0.6	114
26	Metabolic Responses to Dietary Protein Restriction Require an Increase in FGF21 that Is Delayed by the Absence of GCN2. Cell Reports, 2016, 16, 707-716.	6.4	146
27	Methionine restriction improves renal insulin signalling in aged kidneys. Mechanisms of Ageing and Development, 2016, 157, 35-43.	4.6	36
28	Regulation of Brown and White Adipocyte Transcriptome by the Transcriptional Coactivator NT-PGC-1α. PLoS ONE, 2016, 11, e0159990.	2.5	20
29	Metabolic responses to dietary leucine restriction involve remodeling of adipose tissue and enhanced hepatic insulin signaling. BioFactors, 2015, 41, 391-402.	5.4	46
30	Compromised responses to dietary methionine restriction in adipose tissue but not liver of <i>ob</i> hi>/ <i>ob</i> obhi> mice. Obesity, 2015, 23, 1836-1844.	3.0	25
31	UCP1 is an essential mediator of the effects of methionine restriction on energy balance but not insulin sensitivity. FASEB Journal, 2015, 29, 2603-2615.	0.5	68
32	Cellular and molecular remodeling of inguinal adipose tissue mitochondria by dietary methionine restriction. Journal of Nutritional Biochemistry, 2015, 26, 1235-1247.	4.2	24
33	Effects of hepatic protein tyrosine phosphatase 1B and methionine restriction on hepatic and whole-body glucose and lipid metabolism in mice. Metabolism: Clinical and Experimental, 2015, 64, 305-314.	3.4	20
34	Dietary Quercetin Supplementation in Mice Increases Skeletal Muscle PGC1α Expression, Improves Mitochondrial Function and Attenuates Insulin Resistance in a Time-Specific Manner. PLoS ONE, 2014, 9, e89365.	2.5	53
35	Effect of Exercise Intensity on Isoform-Specific Expressions of NT-PGC-1 <i>\hat{l}±</i> mRNA in Mouse Skeletal Muscle. BioMed Research International, 2014, 2014, 1-11.	1.9	49
36	The Impact of Dietary Methionine Restriction on Biomarkers of Metabolic Health. Progress in Molecular Biology and Translational Science, 2014, 121, 351-376.	1.7	81

#	Article	IF	Citations
37	Methionine restriction restores a younger metabolic phenotype in adult mice with alterations in fibroblast growth factor 21. Aging Cell, 2014, 13, 817-827.	6.7	158
38	Mechanisms of Increased In Vivo Insulin Sensitivity by Dietary Methionine Restriction in Mice. Diabetes, 2014, 63, 3721-3733.	0.6	156
39	A systems biology analysis of the unique and overlapping transcriptional responses to caloric restriction and dietary methionine restriction in rats. FASEB Journal, 2014, 28, 2577-2590.	0.5	39
40	Transcriptional impact of dietary methionine restriction on systemic inflammation: Relevance to biomarkers of metabolic disease during aging. BioFactors, 2014, 40, 13-26.	5.4	51
41	Effects of Artemisia species on de novo lipogenesis inÂvivo. Nutrition, 2014, 30, S17-S20.	2.4	5
42	FGF21 is an endocrine signal of protein restriction. Journal of Clinical Investigation, 2014, 124, 3913-3922.	8.2	451
43	Remodeling of Lipid Metabolism by Dietary Restriction of Essential Amino Acids. Diabetes, 2013, 62, 2635-2644.	0.6	46
44	Remodeling the Integration of Lipid Metabolism Between Liver and Adipose Tissue by Dietary Methionine Restriction in Rats. Diabetes, 2013, 62, 3362-3372.	0.6	95
45	Analyzing Phosphorylation-Dependent Regulation of Subcellular Localization and Transcriptional Activity of Transcriptional Coactivator NT-PGC-1α. Methods in Molecular Biology, 2013, 952, 163-173.	0.9	2
46	NT-PGC- $1\hat{l}$ ± Protein Is Sufficient to Link \hat{l}^2 3-Adrenergic Receptor Activation to Transcriptional and Physiological Components of Adaptive Thermogenesis. Journal of Biological Chemistry, 2012, 287, 9100-9111.	3.4	68
47	id="M1">		

#	Article	IF	Citations
55	Quercetin transiently increases energy expenditure but persistently decreases circulating markers of inflammation in C57BL/6J mice fed a high-fat diet. Metabolism: Clinical and Experimental, 2008, 57, S39-S46.	3.4	177
56	Activator of G Protein Signaling 3 Null Mice: I. Unexpected Alterations in Metabolic and Cardiovascular Function. Endocrinology, 2008, 149, 3842-3849.	2.8	58
57	The Effect of Â-Adrenergic and Peroxisome Proliferator-Activated Receptor-Â Stimulation on Target Genes Related to Lipid Metabolism in Human Subcutaneous Adipose Tissue. Diabetes Care, 2007, 30, 1179-1186.	8.6	39
58	Polyunsaturated fatty acid suppression of fatty acid synthase (FASN): evidence for dietary modulation of NF-Y binding to the Fasn promoter by SREBP-1c. Biochemical Journal, 2007, 402, 591-600.	3.7	94
59	Increased Hypothalamic Protein Tyrosine Phosphatase 1B Contributes to Leptin Resistance with Age. Endocrinology, 2007, 148, 433-440.	2.8	100
60	Combining β-adrenergic and peroxisome proliferator–activated receptor γ stimulation improves lipoprotein composition in healthy moderately obese subjects. Metabolism: Clinical and Experimental, 2006, 55, 26-34.	3.4	11
61	A newly discovered member of the fatty acid desaturase gene family: A non-coding, antisense RNA gene to î"5-desaturase. Prostaglandins Leukotrienes and Essential Fatty Acids, 2006, 75, 97-106.	2.2	12
62	Hepatocyte nuclear factor- $4\hat{l}_{\pm}$ contributes to carbohydrate-induced transcriptional activation of hepatic fatty acid synthase. Biochemical Journal, 2006, 399, 285-295.	3.7	47
63	Vagal afferent control of opioidergic effects in rat brainstem circuits. Journal of Physiology, 2006, 575, 761-776.	2.9	45
64	The G-protein regulatory (GPR) motif-containing Leu–Gly–Asn-enriched protein (LGN) and Giα3 influence cortical positioning of the mitotic spindle poles at metaphase in symmetrically dividing mammalian cells. European Journal of Cell Biology, 2006, 85, 1233-1240.	3.6	42
65	Differential coupling of Î ² 3A- and Î ² 3B-adrenergic receptors to endogenous and chimeric Gαs and Gαi. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E704-E715.	3.5	3
66	The Proto-oncogene SET Interacts with Muscarinic Receptors and Attenuates Receptor Signaling. Journal of Biological Chemistry, 2006, 281, 40310-40320.	3.4	20
67	Short photoperiod exposure increases adipocyte sensitivity to noradrenergic stimulation in Siberian hamsters. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R1354-R1360.	1.8	23
68	Targeted deletion of melanocortin receptor subtypes 3 and 4, but not CART, alters nutrient partitioning and compromises behavioral and metabolic responses to leptin. FASEB Journal, 2005, 19, 1482-1491.	0.5	72
69	Dietary polyunsaturated fatty acids enhance hepatic AMP-activated protein kinase activity in rats. Biochemical and Biophysical Research Communications, 2005, 326, 851-858.	2.1	110
70	AGS3 and Signal Integration by Gî±s- and Gî±i-coupled Receptors. Journal of Biological Chemistry, 2004, 279, 13375-13382.	3.4	44
71	Ciliary neurotrophic factor influences endocrine adipocyte function: inhibition of leptin via PI 3-kinase. Molecular and Cellular Endocrinology, 2004, 224, 21-27.	3.2	20
72	Activation of \hat{l}^2 2- and \hat{l}^2 3-Adrenergic Receptors Increases Brain Tryptophan. Journal of Pharmacology and Experimental Therapeutics, 2003, 305, 653-659.	2.5	37

#	Article	IF	Citations
73	Differential Mechanisms and Development of Leptin Resistance in A/J Versus C57BL/6J Mice during Diet-Induced Obesity. Endocrinology, 2003, 144, 1155-1163.	2.8	69
74	Beta-adrenergic receptors on leukocytes of the channel catfish, Ictalurus punctatus. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2002, 131, 27-37.	2.6	7
75	Adaptive Changes in Adipocyte Gene Expression Differ in AKR/J and SWR/J Mice during Diet-Induced Obesity. Journal of Nutrition, 2002, 132, 3325-3332.	2.9	43
76	Photoperiodic regulation of gene expression in brown and white adipose tissue of Siberian hamsters (Phodopus sungorus). American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R114-R121.	1.8	37
77	Leptin selectively reduces white adipose tissue in mice via a UCP1-dependent mechanism in brown adipose tissue. American Journal of Physiology - Endocrinology and Metabolism, 2001, 280, E372-E377.	3.5	53
78	Multiplicity of mechanisms of serotonin receptor signal transduction., 2001, 92, 179-212.		407
79	Differential regulation of leptin expression and function in A/J vs. C57BL/6J mice during diet-induced obesity. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E356-E365.	3.5	78
80	Central Leptin Regulates the UCP1 and obGenes in Brown and White Adipose Tissue via Different β-Adrenoceptor Subtypes. Journal of Biological Chemistry, 2000, 275, 33059-33067.	3.4	90
81	Agonist-induced translocation of G _{q/11} Î \pm immunoreactivity directly from plasma membrane in MDCK cells. American Journal of Physiology - Renal Physiology, 1999, 276, F528-F534.	2.7	6
82	Norepinephrine Is Required for Leptin Effects on Gene Expression in Brown and White Adipose Tissue ¹ . Endocrinology, 1999, 140, 4772-4778.	2.8	102
83	The recombinant 5â€HT _{1A} receptor: G protein coupling and signalling pathways. British Journal of Pharmacology, 1999, 127, 1751-1764.	5.4	216
84	Coupling of thromboxane A2 receptor isoforms to $\widehat{Gl}\pm 13$: effects on ligand binding and signalling. Biochimica Et Biophysica Acta - Molecular Cell Research, 1999, 1450, 288-296.	4.1	20
85	Induction of Uncoupling Protein Expression in Brown and White Adipose Tissue by Leptin**This work was supported by a research grant from the American Diabetes Association, USPHS Grant DK-53981, and a research grant from the USDA (NRICGP/USDA 9800699) Endocrinology, 1999, 140, 292-300.	2.8	155
86	Norepinephrine Is Required for Leptin Effects on Gene Expression in Brown and White Adipose Tissue. Endocrinology, 1999, 140, 4772-4778.	2.8	27
87	Regulation of Stimulated Cyclic AMP Synthesis by Urocanic Acid. Photochemistry and Photobiology, 1998, 67, 324-331.	2.5	10
88	Changes in G protein expression account for impaired modulation of hepatic cAMP formation after BDL. American Journal of Physiology - Renal Physiology, 1998, 274, G1151-G1159.	3.4	11
89	Increased prostacyclin and PGE2 stimulated cAMP production by macrophages from endotoxin-tolerant rats. American Journal of Physiology - Cell Physiology, 1998, 274, C1238-C1244.	4.6	12
90	Adrenalectomy after Weaning Restores \hat{l}^2 3-Adrenergic Receptor Expression in White Adipocytes from C57BL/6J-ob/ob Mice*. Endocrinology, 1997, 138, 2697-2704.	2.8	16

#	Article	IF	Citations
91	5-HT1A Receptor Activates Na+/H+ Exchange in CHO-K1 Cells through Gil±2 and Gil±3. Journal of Biological Chemistry, 1997, 272, 7770-7776.	3.4	47
92	RU-486 (Mifepristone) ameliorates diabetes but does not correct deficient \hat{l}^2 -adrenergic signalling in adipocytes from mature C57BL/6J-ob/ob mice. International Journal of Obesity, 1997, 21, 865-873.	3.4	46
93	Adrenalectomy after Weaning Restores Â3-Adrenergic Receptor Expression in White Adipocytes from C57BL/6J-ob/ob Mice. Endocrinology, 1997, 138, 2697-2704.	2.8	3
94	The Metabolic Significance of Leptin in Humans: Gender-Based Differences in Relationship to Adiposity, Insulin Sensitivity, and Energy Expenditure. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 1293-1300.	3.6	299
95	Alterations in macrophage G proteins are associated with endotoxin tolerance. Biochimica Et Biophysica Acta - Molecular Cell Research, 1996, 1312, 163-168.	4.1	29
96	Role of guanine nucleotide-binding proteins, $Gil\pm 3$ and $Gsl\pm 3$, in dopamine and thyrotropin-releasing hormone signal transduction: evidence for competition and commonality. Journal of Endocrinology, 1996, 148, 447-455.	2.6	15
97	INCREASED CICAPROST STIMULATED cAMP LEVELS IN MACROPHAGES FROM ENDOTOXIN TOLERANT RATS. Shock, 1996, 5, 50.	2.1	0
98	Increased cAMP and cAMP-Dependent Protein Kinase Activity Mediate Anti-CD2 Induced Suppression of Anti-CD3-Driven Interleukin-2 Production and CD25 Expression. Pathobiology, 1995, 63, 175-187.	3.8	8
99	Agonist-induced desensitization and phosphorylation of human 5-HT1A receptor expressed in Sf9 insect cells. Biochemistry, 1995, 34, 11954-11962.	2.5	40
100	Tissue-specific alterations in G protein expression in genetic versus diet-induced models of non-insulin-dependent diabetes mellitus in the mouse. Metabolism: Clinical and Experimental, 1995, 44, 771-778.	3.4	13
101	Differential Interaction with and Regulation of Multiple G-proteins by the Rat A3 Adenosine Receptor. Journal of Biological Chemistry, 1995, 270, 16895-16902.	3.4	116
102	Somatostatin selectively couples to G(o) alpha in HIT-T15 cells. Diabetes, 1995, 44, 85-89.	0.6	5
103	Characterization and Use of Crude α-Subunit Preparations for Quantitative Immunoblotting of G Proteins. Analytical Biochemistry, 1994, 220, 82-91.	2.4	47
104	Selective Activation of Inhibitory G-Protein .alphaSubunits by Partial Agonists of the Human 5-HT1A Receptor. Biochemistry, 1994, 33, 4283-4290.	2.5	100
105	Selective Activation of Inhibitory G-Protein .alphaSubunits by Partial Agonists of the human 5-HT1A Receptor. [Erratum to document cited in CA120:209166]. Biochemistry, 1994, 33, 11404-11404.	2.5	0
106	Impaired expression and functional activity of the beta 3- and beta 1- adrenergic receptors in adipose tissue of congenitally obese (C57BL/6J ob/ob) mice. Molecular Endocrinology, 1994, 8, 518-527.	3.7	109
107	Separation and Assay of Phosphodiesterase Isoforms in Murine Peritoneal Macrophages Using Membrane Matrix DEAE Chromatography and [32P]cAMP. Analytical Biochemistry, 1993, 208, 155-160.	2.4	8
108	GTP-binding proteins regulate high conductance anion channels in rat bile duct epithelial cells. Journal of Membrane Biology, 1993, 133, 253-61.	2.1	46

#	Article	IF	CITATIONS
109	Cell-specific physical and functional coupling of human 5-HT1A receptors to inhibitory G protein .alphasubunits and lack of coupling to Gs.alpha Biochemistry, 1993, 32, 11064-11073.	2.5	142
110	Importance of cholecystokinin in peptide-YY release in response to pancreatic juice diversion. Regulatory Peptides, 1993, 43, 169-176.	1.9	15
111	Role of the Distal Pancreas in Pancreatic Polypeptide Release. Pancreas, 1992, 7, 339-344.	1.1	0
112	Stimulation of secretion by the T84 colonic epithelial cell line with dietary flavonols. Biochemical Pharmacology, 1991, 41, 1879-1886.	4.4	39
113	Meal-Induced Pancreatic Polypeptide Release in a Validated Pancreatic Denervation Model. Pancreas, 1990, 5, 323-329.	1.1	1
114	Regulation of Pancreatic Endocrine Function by Cholecystokinin: Studies with MK-329, a Nonpeptide Cholecystokinin Receptor Antagonist*. Journal of Clinical Endocrinology and Metabolism, 1990, 70, 1312-1318.	3.6	46
115	Results of in-vitro fertilization in normal ovulatory women treated with pure follicle stimulating hormone. Analysis of the oestradiol response. Human Reproduction, 1989, 4, 754-756.	0.9	3
116	[7] Purification and assay of cAMP, cGMP, and cyclic nucleotide analogs in cells treated with cyclic nucleotide analogs. Methods in Enzymology, 1988, 159, 74-82.	1.0	33