Elena Jakubikova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1017014/publications.pdf

Version: 2024-02-01

331670 276875 1,773 56 21 41 citations h-index g-index papers 58 58 58 2336 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The ligand-to-metal charge transfer excited state of [Re(dmpe)3]2+. Photosynthesis Research, 2022, 151, 155-161.	2.9	4
2	Electron transport through a (terpyridine)ruthenium metallo-surfactant containing a redox-active aminocatechol derivative. Dalton Transactions, 2022, 51, 8425-8436.	3.3	3
3	Electrocatalytic nitrate reduction with Co-based catalysts: comparison of DIM, TIM and cyclam ligands. Dalton Transactions, 2021, 50, 12324-12331.	3.3	8
4	Reduced-dimensional surface hopping with offline–online computations. Physical Chemistry Chemical Physics, 2021, 23, 19547-19557.	2.8	2
5	Halogenation affects driving forces, reorganization energies and "rocking―motions in strained [Fe(tpy) ₂] ²⁺ complexes. Dalton Transactions, 2021, 50, 14566-14575.	3.3	6
6	Efficient Approximation of Potential Energy Surfaces with Mixed-Basis Interpolation. Journal of Chemical Theory and Computation, 2021, 17, 5673-5683.	5.3	3
7	Evidence for a lowest energy ³ MLCT excited state in [Fe(tpy)(CN) ₃] ^{â°'} . Chemical Communications, 2021, 57, 4658-4661.	4.1	9
8	Are all charge-transfer parameters created equally? A study of functional dependence and excited-state charge-transfer quantification across two dye families. Physical Chemistry Chemical Physics, 2021, 23, 20583-20597.	2.8	3
9	Role of a 3D Structure in Energy Transfer in Mixed-Ligand Metal–Organic Frameworks. Journal of Physical Chemistry C, 2021, 125, 22998-23010.	3.1	15
10	Interpolation Methods for Molecular Potential Energy Surface Construction. Journal of Physical Chemistry A, 2021, 125, 9725-9735.	2.5	11
11	Influence of Electrolyte Composition on Ultrafast Interfacial Electron Transfer in Fe-Sensitized TiO ₂ -Based Solar Cells. Journal of Physical Chemistry C, 2020, 124, 1794-1811.	3.1	19
12	Electrode-adsorption activates <i>trans</i> -[Cr(cyclam)Cl ₂] ⁺ for electrocatalytic nitrate reduction. Chemical Communications, 2020, 56, 603-606.	4.1	15
13	SCC-DFTB Parameters for Fe–C Interactions. Journal of Physical Chemistry A, 2020, 124, 9674-9682.	2.5	3
14	The Influence of Nucleophilic and Redox Pincer Character as well as Alkali Metals on the Capture of Oxygen Substrates: The Case of Chromium(II). Chemistry - A European Journal, 2020, 26, 9547-9555.	3.3	4
15	Using Ultrafast X-ray Spectroscopy To Address Questions in Ligand-Field Theory: The Excited State Spin and Structure of [Fe(dcpp) ₂] ²⁺ . Inorganic Chemistry, 2019, 58, 9341-9350.	4.0	29
16	Intramolecular Hydrogen Bonding Facilitates Electrocatalytic Reduction of Nitrite in Aqueous Solutions. Inorganic Chemistry, 2019, 58, 9443-9451.	4.0	40
17	Approximating Periodic Potential Energy Surfaces with Sparse Trigonometric Interpolation. Journal of Physical Chemistry B, 2019, 123, 9677-9684.	2.6	3
18	Designing air-stable cyclometalated Fe(<scp>ii</scp>) complexes: stabilization <i>via</i> electrostatic effects. Dalton Transactions, 2019, 48, 374-378.	3.3	12

#	Article	IF	CITATIONS
19	Molecular Dynamics Simulations on Relaxed Reduced-Dimensional Potential Energy Surfaces. Journal of Physical Chemistry A, 2019, 123, 4543-4554.	2.5	5
20	Predicting the electrochemical behavior of Fe(II) complexes from ligand orbital energies. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 376, 7-11.	3.9	4
21	Large Excited-State Conformational Displacements Expedite Triplet Formation in a Small Conjugated Oligomer. Journal of Physical Chemistry Letters, 2019, 10, 1259-1263.	4.6	4
22	Ray-Dutt and Bailar Twists in Fe(II)-Tris(2,2′-bipyridine): Spin States, Sterics, and Fe–N Bond Strengths. Inorganic Chemistry, 2018, 57, 5585-5596.	4.0	25
23	Comparison of Interfacial Electron Transfer Efficiency in [Fe(ctpy) ₂] _{2+–TiO₂ and [Fe(cCNC)₂]²⁺–TiO₂ Assemblies: Importance of Conformational Sampling, Iournal of Physical Chemistry A. 2018, 122, 1821-1830.}	2.5	9
24	Excited-State Switching between Ligand-Centered and Charge Transfer Modulated by Metal–Carbon Bonds in Cyclopentadienyl Iridium Complexes. Inorganic Chemistry, 2018, 57, 15445-15461.	4.0	12
25	A flexible, redox-active macrocycle enables the electrocatalytic reduction of nitrate to ammonia by a cobalt complex. Chemical Science, 2018, 9, 4950-4958.	7.4	63
26	Tuning the Redox Potentials and Ligand Field Strength of Fe(II) Polypyridines: The Dual π-Donor and π-Acceptor Character of Bipyridine. Inorganic Chemistry, 2018, 57, 9907-9917.	4.0	44
27	Ironing out the photochemical and spin-crossover behavior of Fe(II) coordination compounds with computational chemistry. Coordination Chemistry Reviews, 2017, 337, 97-111.	18.8	103
28	HOMO inversion as a strategy for improving the light-absorption properties of Fe(<scp>ii</scp>) chromophores. Chemical Science, 2017, 8, 8115-8126.	7.4	52
29	Two-step model for ultrafast interfacial electron transfer: limitations of Fermi's golden rule revealed by quantum dynamics simulations. Chemical Science, 2017, 8, 5979-5991.	7.4	17
30	Electronic Absorption Spectra of Tetrapyrrole-Based Pigments via TD-DFT: A Reduced Orbital Space Study. Journal of Physical Chemistry A, 2016, 120, 5816-5825.	2.5	3
31	Quantum Dynamics Simulations of Excited State Energy Transfer in a Zinc–Free-Base Porphyrin Dyad. Journal of Physical Chemistry A, 2016, 120, 8075-8084.	2.5	11
32	Nondirected C–H Activation of Arenes with Cp*Ir(III) Acetate Complexes: An Experimental and Computational Study. Organometallics, 2016, 35, 2435-2445.	2.3	13
33	Insights into the Spin-State Transitions in [Fe(tpy) ₂] ²⁺ : Importance of the Terpyridine Rocking Motion. Inorganic Chemistry, 2015, 54, 11259-11268.	4.0	47
34	Tuning the Electronic Structure of Fe(II) Polypyridines via Donor Atom and Ligand Scaffold Modifications: A Computational Study. Inorganic Chemistry, 2015, 54, 8786-8793.	4.0	61
35	Investigating Interfacial Electron Transfer in Highly Efficient Porphyrin-Sensitized Solar Cells. ACS Symposium Series, 2015, , 169-188.	0.5	0
36	Ground-State Electronic Structure of RC-LH1 and LH2 Pigment Assemblies of Purple Bacteria via the EBF-MO Method. Journal of Physical Chemistry A, 2015, 119, 8934-8943.	2.5	4

#	Article	IF	CITATIONS
37	Electron Injection from Copper Diimine Sensitizers into TiO ₂ : Structural Effects and Their Implications for Solar Energy Conversion Devices. Journal of the American Chemical Society, 2015, 137, 9670-9684.	13.7	60
38	Fe(II)-Polypyridines as Chromophores in Dye-Sensitized Solar Cells: A Computational Perspective. Accounts of Chemical Research, 2015, 48, 1441-1449.	15.6	76
39	Linker dependence of interfacial electron transfer rates in Fe(II)-polypyridine sensitized solar cells. Journal of Physics Condensed Matter, 2015, 27, 134205.	1.8	19
40	Electronic Structure and Absorption Properties of Strongly Coupled Porphyrin–Perylene Arrays. Journal of Physical Chemistry A, 2015, 119, 9879-9888.	2.5	19
41	Cyclometalated Fe(II) Complexes as Sensitizers in Dye-Sensitized Solar Cells. Inorganic Chemistry, 2015, 54, 560-569.	4.0	78
42	Electronic Structure of Covalently Linked Zinc Bacteriochlorin Molecular Arrays: Insights into Molecular Design for NIR Light Harvesting. Journal of Physical Chemistry A, 2014, 118, 9901-9913.	2.5	10
43	Reaction Path Following with Sparse Interpolation. Journal of Chemical Theory and Computation, 2014, 10, 2942-2949.	5.3	12
44	Orbital Analysis and Excited-State Calculations in an Energy-Based Fragmentation Method. Journal of Chemical Theory and Computation, 2013, 9, 3350-3363.	5.3	9
45	Elucidating Band-Selective Sensitization in Iron(II) Polypyridine-TiO ₂ Assemblies. Inorganic Chemistry, 2013, 52, 8621-8628.	4.0	48
46	Role of Noncoplanar Conformation in Facilitating Ground State Hole Transfer in Oxidized Porphyrin Dyads. Journal of Physical Chemistry A, 2012, 116, 10107-10114.	2.5	6
47	Low-Spin versus High-Spin Ground State in Pseudo-Octahedral Iron Complexes. Inorganic Chemistry, 2012, 51, 6011-6019.	4.0	116
48	Effects of Peripheral and Axial Substitutions on Electronic Transitions of Tin Naphthalocyanines. Journal of Physical Chemistry A, 2011, 115, 9265-9272.	2.5	11
49	Systematic Study of Modifications to Ruthenium(II) Polypyridine Dyads for Electron Injection Enhancement. Inorganic Chemistry, 2010, 49, 2975-2982.	4.0	31
50	Electronic Structure and Spectroscopy of [Ru(tpy) ₂] ²⁺ , [Ru(tpy)(bpy)(H ₂ O)] ²⁺ , and [Ru(tpy)(bpy)(Cl)] ⁺ . Inorganic Chemistry, 2009, 48, 10720-10725.	4.0	91
51	Calculation of One-Electron Redox Potentials Revisited. Is It Possible to Calculate Accurate Potentials with Density Functional Methods?. Journal of Physical Chemistry A, 2009, 113, 6745-6750.	2.5	270
52	Interfacial Electron Transfer in TiO ₂ Surfaces Sensitized with Ru(II)â^'Polypyridine Complexes. Journal of Physical Chemistry A, 2009, 113, 12532-12540.	2.5	80
53	Reactions of Sulfur Dioxide with Neutral Vanadium Oxide Clusters in the Gas Phase. II. Experimental Study Employing Single-Photon Ionization. Journal of Physical Chemistry A, 2008, 112, 11067-11077.	2.5	48
54	Reactions of Sulfur Dioxide with Neutral Vanadium Oxide Clusters in the Gas Phase. I. Density Functional Theory Study. Journal of Physical Chemistry A, 2007, 111, 13339-13346.	2.5	32

ELENA JAKUBIKOVA

#	Article	IF	CITATIONS
55	Density Functional Theory Study of Small Vanadium Oxide Clustersâ€. Journal of Physical Chemistry A, 2007, 111, 12938-12943.	2.5	62
56	Exploration of Basis Set Issues for Calculation of Intermolecular Interactions. Journal of Physical Chemistry A, 2006, 110, 9529-9541.	2.5	20