Hai-Dong Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1016790/publications.pdf Version: 2024-02-01

Ηλι-Πονις Υμ

#	Article	IF	CITATIONS
1	Flexible organic electrochemical transistors for chemical and biological sensing. Nano Research, 2022, 15, 2433-2464.	10.4	29
2	Horseradish peroxidase-triggered direct in situ fluorescent immunoassay platform for sensing cardiac troponin I and SARS-CoV-2 nucleocapsid protein in serum. Biosensors and Bioelectronics, 2022, 198, 113823.	10.1	19
3	Optical/electrochemical methods for detecting mitochondrial energy metabolism. Chemical Society Reviews, 2022, 51, 71-127.	38.1	45
4	Smart band-aid: Multifunctional and wearable electronic device for self-powered motion monitoring and human-machine interaction. Nano Energy, 2022, 92, 106840.	16.0	39
5	Introduction to flexible nanomaterials: microscopic mechanisms and macroscopic applications. Nanoscale Advances, 2022, 4, 1716-1717.	4.6	2
6	Paper-based sensors for diagnostics, human activity monitoring, food safety and environmental detection. Sensors & Diagnostics, 2022, 1, 312-342.	3.8	32
7	Realizing Ultrahigh Transconductance in Organic Electrochemical Transistor by Coâ€Doping PEDOT:PSS with Ionic Liquid and Dodecylbenzenesulfonate. Macromolecular Rapid Communications, 2022, 43, e2200212.	3.9	14
8	Lignin-Incorporated Nanogel Serving As an Antioxidant Biomaterial for Wound Healing. ACS Applied Bio Materials, 2021, 4, 3-13.	4.6	58
9	Fluorescence copolymer-based dual-signal monitoring tyrosinase activity and its inhibitor screening via blue-green emission transformation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 246, 119028.	3.9	4
10	Simultaneously Detecting Monoamine Oxidase A and B in Disease Cell/Tissue Samples Using Paper-Based Devices. ACS Applied Bio Materials, 2021, 4, 1395-1402.	4.6	5
11	Highly flexible and degradable memory electronics comprised of all-biocompatible materials. Nanoscale, 2021, 13, 724-729.	5.6	17
12	Ammonium Intercalation Induced Expanded 1T-Rich Molybdenum Diselenides for Improved Lithium Ion Storage. ACS Applied Materials & Interfaces, 2021, 13, 17459-17466.	8.0	42
13	Recent Development of Gas Sensing Platforms Based on 2D Atomic Crystals. Research, 2021, 2021, 9863038.	5.7	29
14	High-Performance Foam-Shaped Strain Sensor Based on Carbon Nanotubes and Ti ₃ C ₂ T _{<i>x</i>} MXene for the Monitoring of Human Activities. ACS Nano, 2021, 15, 9690-9700.	14.6	191
15	A full-wavelength coverage colorimetric sensor depending on polymer-carbon nanodots from blue to red for visual detection of nitrite via smartphone. Dyes and Pigments, 2021, 191, 109383.	3.7	14
16	Recent progress in the development of sensing systems for in vivo detection of biological hydrogen sulfide. Dyes and Pigments, 2021, 192, 109451.	3.7	14
17	A MXene-functionalized paper-based electrochemical immunosensor for label-free detection of cardiac troponin I. Journal of Semiconductors, 2021, 42, 092601.	3.7	17
18	Fully sustainable and high-performance fish gelatin-based triboelectric nanogenerator for wearable movement sensing and human-machine interaction. Nano Energy, 2021, 89, 106329.	16.0	41

Hai-Dong Yu

#	Article	IF	CITATIONS
19	Embedding Silver Nanowires into a Hydroxypropyl Methyl Cellulose Film for Flexible Electrochromic Devices with High Electromechanical Stability. ACS Applied Materials & Interfaces, 2021, 13, 1735-1742.	8.0	25
20	3D vertical-flow paper-based device for simultaneous detection of multiple cancer biomarkers by fluorescent immunoassay. Sensors and Actuators B: Chemical, 2020, 306, 127239.	7.8	70
21	Catalysis-based specific detection and inhibition of tyrosinase and their application. Journal of Pharmaceutical Analysis, 2020, 10, 414-425.	5.3	28
22	Topochemical assembly of levodopa nanoparticles network as a high-performance biosensing platform coupling with π-π stacking and electrostatic repulsion interactions. Talanta, 2020, 219, 121285.	5.5	3
23	Fish Gelatin Based Triboelectric Nanogenerator for Harvesting Biomechanical Energy and Self-Powered Sensing of Human Physiological Signals. ACS Applied Materials & Interfaces, 2020, 12, 16442-16450.	8.0	100
24	Sustainable and Transparent Fish Gelatin Films for Flexible Electroluminescent Devices. ACS Nano, 2020, 14, 3876-3884.	14.6	86
25	Blue and green emission-transformed fluorescent copolymer: Specific detection of levodopa of anti-Parkinson drug in human serum. Talanta, 2020, 214, 120817.	5.5	13
26	Unconventional solution-phase epitaxial growth of organic-inorganic hybrid perovskite nanocrystals on metal sulfide nanosheets. Science China Materials, 2019, 62, 43-53.	6.3	20
27	Design of a nanoswitch for sequentially multi-species assay based on competitive interaction between DNA-templated fluorescent copper nanoparticles, Cr3+ and pyrophosphate and ALP. Talanta, 2019, 205, 120132.	5.5	19
28	Two-component ratiometric sensor for Cu2+ detection on paper-based device. Analytical and Bioanalytical Chemistry, 2019, 411, 6165-6172.	3.7	6
29	Using magnetic levitation for density-based detection of cooking oils. RSC Advances, 2019, 9, 18285-18291.	3.6	6
30	Signal-Enhanced Detection of Multiplexed Cardiac Biomarkers by a Paper-Based Fluorogenic Immunodevice Integrated with Zinc Oxide Nanowires. Analytical Chemistry, 2019, 91, 9300-9307.	6.5	60
31	All Paper-Based Flexible and Wearable Piezoresistive Pressure Sensor. ACS Applied Materials & Interfaces, 2019, 11, 25034-25042.	8.0	240
32	Biomass-Templated Fabrication of Metallic Materials for Photocatalytic and Bactericidal Applications. Materials, 2019, 12, 1271.	2.9	4
33	Development of luminescent nanoswitch for sensing of alkaline phosphatase in human serum based onAl3+-PPi interaction and Cu NCs with AlE properties. Analytica Chimica Acta, 2019, 1076, 131-137.	5.4	28
34	A Highly Efficient Red Metal-free Organic Phosphor for Time-Resolved Luminescence Imaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 18103-18110.	8.0	74
35	A paper-based chemiluminescence immunoassay device for rapid and high-throughput detection of allergen-specific IgE. Analyst, The, 2019, 144, 2584-2593.	3.5	23
36	Flexible, transparent nanocellulose paper-based perovskite solar cells. Npj Flexible Electronics, 2019, 3, .	10.7	117

Hai-Dong Yu

#	Article	IF	CITATIONS
37	A transparent paper-based platform for multiplexed bioassays by wavelength-dependent absorbance/transmittance. Analyst, The, 2019, 144, 7157-7161.	3.5	11
38	Paper-based fluorescent immunoassay for highly sensitive and selective detection of norfloxacin in milk at picogram level. Talanta, 2019, 195, 333-338.	5.5	46
39	Thinning shell thickness of CuInS2@ZnS quantum dots to boost detection sensitivity. Analytica Chimica Acta, 2019, 1047, 124-130.	5.4	12
40	Surfaceâ€Oxidationâ€Controlled Synthesis of Blue Fluorescence Wavelengthâ€Tunable Miniâ€Size Carbon Nitride Nanosheet and Its Application. ChemistrySelect, 2018, 3, 2229-2234.	1.5	0
41	Paper-based fluorogenic devices for in vitro diagnostics. Biosensors and Bioelectronics, 2018, 102, 256-266.	10.1	50
42	Paper-Based Fluorogenic Device for Detection of Copper Ions in a Biological System. ACS Applied Bio Materials, 2018, 1, 1523-1529.	4.6	14
43	Polydopamine Dots-Based Fluorescent Nanoswitch Assay for Reversible Recognition of Glutamic Acid and Al ³⁺ in Human Serum and Living Cell. ACS Applied Materials & Interfaces, 2018, 10, 35760-35769.	8.0	37
44	Benzothiazole–pyrimidine-based BODIPY analogues: promising luminophores with fluorescence sensing and imaging ability and asymmetrization-induced solid-state emission. Dalton Transactions, 2016, 45, 17274-17280.	3.3	16
45	Preparation of porosity-controlled calcium carbonate by thermal decomposition of volume content-variable calcium carboxylate derivatives. Chemical Communications, 2013, 49, 4229-4231.	4.1	8
46	Chemical routes to top-down nanofabrication. Chemical Society Reviews, 2013, 42, 6006.	38.1	167
47	Metal Corrosion for Nanofabrication. Small, 2012, 8, 2621-2635.	10.0	30
48	Fabrication and osteoregenerative application of composition-tunable CaCO3/HA composites. Journal of Materials Chemistry, 2011, 21, 4588.	6.7	8
49	Topâ€Down Fabrication of Calcite Nanoshoot Arrays by Crystal Dissolution. Advanced Materials, 2010, 22, 3181-3184.	21.0	22
50	Bioinspired fabrication of 3D hierarchical porous nanomicrostructures of calcium carbonate for bone regeneration. Chemical Communications, 2010, 46, 6578.	4.1	53
51	Perpendicular Branching in Crystal Growth of 3D Architecture‶uned Cadmium Hydroxide Arrays: From Oriented Tripods to Faceted Crystals. Advanced Materials, 2008, 20, 2276-2279.	21.0	18
52	Top-Down Solid-Phase Fabrication of Nanoporous Cadmium Oxide Architectures. Journal of the American Chemical Society, 2007, 129, 2333-2337.	13.7	78
53	Aggregation-driven growth of well-oriented ZnO nanorod arrays. Nanotechnology, 2006, 17, 2994-2997.	2.6	22
54	Morphosynthesis and Ornamentation of 3D Dendritic Nanoarchitectures. Chemistry of Materials, 2005, 17, 332-336.	6.7	159

#	Article	IF	CITATIONS
55	Near-Room-Temperature Production of Diameter-Tunable ZnO Nanorod Arrays through Natural Oxidation of Zinc Metal. Chemistry - A European Journal, 2005, 11, 3149-3154.	3.3	67
56	A General Low-Temperature Route for Large-Scale Fabrication of Highly Oriented ZnO Nanorod/Nanotube Arrays. Journal of the American Chemical Society, 2005, 127, 2378-2379.	13.7	479