
Joelle Amselem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1016779/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	At the nexus of three kingdoms: the genome of the mycorrhizal fungus <i>Gigaspora margarita</i> provides insights into plant, endobacterial and fungal interactions. Environmental Microbiology, 2020, 22, 122-141.	3.8	84
2	pH effect on strain-specific transcriptomes of the take-all fungus. PLoS ONE, 2020, 15, e0236429.	2.5	2
3	RepetDB: a unified resource for transposable element references. Mobile DNA, 2019, 10, 6.	3.6	43
4	Population Genome Sequencing of the Scab Fungal Species <i>Venturia inaequalis</i> , <i>Venturia pirina</i> , <i>Venturia aucupariae</i> and <i>Venturia asperata</i> . G3: Genes, Genomes, Genetics, 2019, 9, 2405-2414.	1.8	33
5	Ten steps to get started in Genome Assembly and Annotation. F1000Research, 2018, 7, 148.	1.6	85
6	Oak genome reveals facets of long lifespan. Nature Plants, 2018, 4, 440-452.	9.3	303
7	A small secreted protein in <i>Zymoseptoria tritici</i> is responsible for avirulence on wheat cultivars carrying the <i>Stb6</i> resistance gene. New Phytologist, 2017, 214, 619-631.	7.3	218
8	Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Scientific Reports, 2017, 7, 11816.	3.3	242
9	Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters. BMC Genomics, 2017, 18, 667.	2.8	111
10	Comparative genomics of Coniophora olivacea reveals different patterns of genome expansion in Boletales. BMC Genomics, 2017, 18, 883.	2.8	20
11	The botrydial biosynthetic gene cluster of Botrytis cinerea displays a bipartite genomic structure and is positively regulated by the putative Zn(II)2Cys6 transcription factor BcBot6. Fungal Genetics and Biology, 2016, 96, 33-46.	2.1	60
12	Decoding the oak genome: public release of sequence data, assembly, annotation and publication strategies. Molecular Ecology Resources, 2016, 16, 254-265.	4.8	108
13	Evolution of the EKA family of powdery mildew avirulence-effector genes from the ORF 1 of a LINE retrotransposon. BMC Genomics, 2015, 16, 917.	2.8	33
14	Deciphering Genome Content and Evolutionary Relationships of Isolates from the Fungus <i>Magnaporthe oryzae</i> Attacking Different Host Plants. Genome Biology and Evolution, 2015, 7, 2896-2912.	2.5	96
15	Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts. Scientific Reports, 2015, 5, 11571.	3.3	50
16	The oak gene expression atlas: insights into Fagaceae genome evolution and the discovery of genes regulated during bud dormancy release. BMC Genomics, 2015, 16, 112.	2.8	49
17	Whole genome comparative analysis of transposable elements provides new insight into mechanisms of their inactivation in fungal genomes. BMC Genomics, 2015, 16, 141.	2.8	105
18	Sex and parasites: genomic and transcriptomic analysis of Microbotryum lychnidis-dioicae, the biotrophic and plant-castrating anther smut fungus. BMC Genomics, 2015, 16, 461.	2.8	58

JOELLE AMSELEM

#	Article	IF	CITATIONS
19	The first set of expressed sequence tags (EST) from the medicinal mushroom Agaricus subrufescens delivers resource for gene discovery and marker development. Applied Microbiology and Biotechnology, 2014, 98, 7879-7892.	3.6	13
20	The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nature Genetics, 2013, 45, 1092-1096.	21.4	236
21	GnpIS: an information system to integrate genetic and genomic data from plants and fungi. Database: the Journal of Biological Databases and Curation, 2013, 2013, bat058.	3.0	43
22	LINKAGE TO THE MATING-TYPE LOCUS ACROSS THE GENUS <i>MICROBOTRYUM</i> : INSIGHTS INTO NONRECOMBINING CHROMOSOMES. Evolution; International Journal of Organic Evolution, 2012, 66, 3519-3533.	2.3	32
23	Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genetics, 2011, 7, e1002230.	3.5	902
24	Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9166-9171.	7.1	640
25	Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations. Nature Communications, 2011, 2, 202.	12.8	481
26	Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature, 2010, 464, 1033-1038.	27.8	641
27	Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal Tradeoffs in Extreme Parasitism. Science, 2010, 330, 1543-1546.	12.6	725
28	Hunting down fungal secretomes using liquidâ€phase IEF prior to high resolution 2â€ĐE. Electrophoresis, 2009, 30, 4118-4136.	2.4	31
29	Genome Annotation in Plants and Fungi: EuGene as a Model Platform. Current Bioinformatics, 2008, 3, 87-97.	1.5	102
30	Systemic response to aphid infestation by Myzus persicae in the phloem of Apium graveolens. Plant Molecular Biology, 2005, 57, 517-540.	3.9	137
31	Gene identification in the oomycete pathogen Phytophthora parasitica during in vitro vegetative growth through expressed sequence tags. Fungal Genetics and Biology, 2005, 42, 611-623.	2.1	46
32	Differential gene expression in Arabidopsis monitored using cDNA arrays. Plant Journal, 1998, 14, 643-652.	5.7	111
33	Further progress towards a catalogue of all Arabidopsis genes: analysis of a set of 5000 non-redundant ESTs. Plant Journal, 1996, 9, 101-124.	5.7	208
34	An inventory of 1152 expressed sequence tags obtained by partial sequencing of cDNAs from Arabidopsis thaliana+. Plant Journal, 1993, 4, 1051-1061.	5.7	254
35	Molecular basis for novel root phenotypes induced by Agrobacterium rhizogenes A4 on cucumber. Plant Molecular Biology, 1992, 19, 421-432.	3.9	42