Riza Khan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10164960/publications.pdf

Version: 2024-02-01

516710 501196 45 841 16 28 citations h-index g-index papers 46 46 46 336 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Molecular insights of hyaluronic acid – ethambutol and hyaluronic acid – isoniazid drug conjugates act as promising novel drugs for the treatment of tuberculosis. Journal of Biomolecular Structure and Dynamics, 2023, 41, 3562-3573.	3.5	5
2	Molecular insights of hyaluronic acid-hydroxychloroquine conjugate as a promising drug in targeting SARS-CoV-2 viral proteins. Journal of Molecular Structure, 2021, 1238, 130457.	3.6	16
3	Hyaluronic Acid - Hydroxychloroquine Conjugate Proposed for Treatment of COVID-19. International Journal of Advanced Science and Engineering, 2020, 06, 1469-1471.	0.1	5
4	Hyaluronic Acid – TB Drug Conjugates for the Treatment of Active Tuberculosis Disease. International Journal of Advanced Science and Engineering, 2020, 7, 1625-1628.	0.1	2
5	Low Calorie High-Intensity Sweeteners. International Journal of Advanced Science and Engineering, 2018, 5, 934.	0.1	6
6	Hyaluronan: From Biomimetic to Industrial Business Strategy. Natural Product Communications, 2011, 6, 1934578X1100600.	0.5	8
7	Synthesis of 6-deoxy-6-chloro and 6-deoxy-6-bromo derivatives of scleroglucan as intermediates for conjugation with methotrexate and other carboxylate containing compounds. Carbohydrate Polymers, 2009, 75, 670-676.	10.2	5
8	Synthesis of 6-O-methotrexylhyaluronan as a drug delivery system. Carbohydrate Research, 2009, 344, 91-97.	2.3	14
9	Synthesis of 6-amino-6-deoxyhyaluronan as an intermediate for conjugation with carboxylate-containing compounds: application to hyaluronan–camptothecin conjugates. Carbohydrate Research, 2009, 344, 98-104.	2.3	24
10	Selective acetylation reactions of hyaluronic acid benzyl ester derivative. Carbohydrate Research, 1998, 306, 137-146.	2.3	6
11	Tin(IV)-functionalised polymer supports; non-toxic and practical reagents for regioselective acetylation of sucrose. Carbohydrate Research, 1996, 283, 17-25.	2.3	14
12	Synthesis of 6-deoxy-6-halolaminarans and conversion of 6-chloro-6-deoxylaminaran into the 6-amino-6-deoxy derivative. Carbohydrate Research, 1996, 292, 39-46.	2.3	4
13	Chemical regioselective hydrolysis of peracetylated reducing disaccharides, specifically at the anomeric centre: Intermediates for the synthesis of oligosaccharides. Tetrahedron Letters, 1994, 35, 4247-4250.	1.4	5
14	Enzymic regioselective hydrolysis of peracetylated reducing disaccharides, specifically at the anomeric centre: Intermediates for the synthesis of oligosaccharides Tetrahedron Letters, 1993, 34, 7767-7770.	1.4	22
15	Perdeuterioacetylation with combined NMR and MS analysis as a method for determining the evolution of individual hydrolysis products during regioselective enzymatic hydrolysis of glucose pentaacetate. Catalysis Letters, 1991, 9, 71-83.	2.6	3
16	Halogenation reactions of derivatives ofd-glucose and sucrose. Carbohydrate Research, 1990, 205, 211-223.	2.3	6
17	Synthesis and ring-opening reactions of 4-chloro-4-deoxy-α-d-galactopyranosyl 3,4-anhydro-1,6-dichloro-1,6-dideoxy-β-d-lyxo-hexulofuranoside. Carbohydrate Research, 1990, 200, 189-199.	2.3	2
18	Cyclic acetals of 4,1′,6′-trichloro-4,1′,6′-trideoxy-galacto-sucrose and their conversion into methyl eth derivatives. Carbohydrate Research, 1990, 198, 275-283.	ner 2.3	2

#	Article	IF	CITATIONS
19	Sucrose and Its Derivatives. Progress in the Chemistry of Organic Natural Products, 1989, , 117-184.	1.1	8
20	Branched-chain sucroses: Synthesis and Wittig reaction of the 1′-aldehydo derivative of sucrose. Carbohydrate Research, 1987, 162, 209-215.	2.3	5
21	Ring-opening reactions of sucrose epoxides: Synthesis of 4′-derivatives of sucrose. Carbohydrate Research, 1987, 162, 199-207.	2.3	12
22	Branched-chain sucrose: Synthesis of 4,1′,6′-trichloro-4,1′,4′,6′-tetradeoxy-4′-C-methyl-galacto-s Carbohydrate Research, 1987, 162, 298-302.	sucrose. 2.3	3
23	Hydroformylation catalysed by rhodium complexes of trehalose-derived ligands and -tredip; a highly recioselective route to 1±-methylarylpropionaldehydes. Tetrahedron, 1986, 42, 5105-5109.	1.9	37
24	Structural comparison of trehalose anomers; the X-ray crystal structures of $\hat{l}\pm\hat{l}\pm-(2,3,4-\text{tri-0-methyl-6-methanesulphonyl})$ glucopyranosyl-1-0-(2' 3' 4'-tri-o-methyl-6'-) Tj ETQq0 0 0 rgBT /Overlog (2' 3' 4'-tri-o-methyl-6'-)	ock 91.0 Tf	504537 Td (m
25	Chemistry and new uses of sucrose: how important?. Pure and Applied Chemistry, 1984, 56, 833-844.	1.9	71
26	A Simple Route to $\hat{1}^2$, $\hat{1}^2$ -Trehalose via Trichloroacetimidates. Journal of Carbohydrate Chemistry, 1984, 3, 343-348.	1.1	22
27	Synthesis and reactions of tert-butyldiphenylsilyl ethers of sucrose. Carbohydrate Research, 1982, 101, 31-38.	2.3	42
28	The Chemistry of Maltose. Advances in Carbohydrate Chemistry and Biochemistry, 1981, 39, 213-278.	0.9	13
29	Kinetic acetonation of sucrose: preparative access to a chirally substituted 1,3,6-trioxacyclooctane system. Journal of Organic Chemistry, 1981, 46, 4057-4060.	3.2	49
30	The first replacement of a chlorosulphonyloxy group by chlorine at C-2 in methyl \hat{l}_{\pm} -D-glucopyranoside and sucrose derivatives. Carbohydrate Research, 1980, 78, 173-183.	2.3	15
31	Synthesis of 6,6′-dideoxy-6,6′-dihalosucroses and conversion of 6,6′-dichloro-6,6′-dideoxysucrose hexa-acetate into 6,6′-diamino-6,6′-dideoxysucrose. Carbohydrate Research, 1980, 78, 185-189.	2.3	16
32	Crystal and molecular structure of $1\hat{a}\in^2$,2:4,6-di-O-isopropyl-idenesucrose tetra-acetate: a unique example of a d-fructofuranosyl ring in a sucrose derivative puckered at oxygen. Carbohydrate Research, 1979, 71, 35-42.	2.3	8
33	Selective de-acetalation of $1\hat{a}\in ^2$,2:4,6-di-O-isopropylidenesucrose tetra-acetate. Carbohydrate Research, 1979, 71, 327-330.	2.3	12
34	Synthesis and reactions of 4,6-acetals of sucrose. Carbohydrate Research, 1978, 65, 109-113.	2.3	33
35	Synthesis of sucrose epoxides, partial de-esterification of $1\hat{a}\in^2$,2:4,6-di-O-isopropylidenesucrose tetra-acetate, and selective tosylation of 3,6 $\hat{a}\in^2$ -di-O-acetyl- $1\hat{a}\in^2$,2:4,6-di-O-isopropylidenesucrose. Carbohydrate Research, 1978, 65, 99-108.	2.3	34
36	Intensification of sweetness. Trends in Biochemical Sciences, 1978, 3, 61-63.	7.5	51

#	Article	IF	Citations
37	Synthesis and reactions of cyclic acetal derivatives of 6,6′-dichloro-6,6′-dideoxysucrose. Carbohydrate Research, 1976, 49, 259-265.	2.3	9
38	Sweetness of sucrose and xylitol. Structural considerations. Journal of the Science of Food and Agriculture, 1976, 27, 140-144.	3. 5	41
39	The Chemistry of Sucrose. Advances in Carbohydrate Chemistry and Biochemistry, 1976, 33, 235-294.	0.9	66
40	Synthesis and reactions of 1′,2:4,6-di-o-isopropylidene-sucrose. Carbohydrate Research, 1975, 43, 247-253.	2.3	45
41	Synthesis of methyl ether derivatives of sucrose. Carbohydrate Research, 1975, 43, 360-365.	2.3	16
42	Reaction of methanesulphonyl chloride-N,N-dimethylformamide with partially esterified derivatives of sucrose. Carbohydrate Research, 1975, 39, 253-262.	2.3	24
43	Sucrochemistry Part XIII. Synthesis of 4,6-O-benzylidenesucrose. Carbohydrate Research, 1974, 32, 375-379.	2.3	32
44	The 4-oxovaleryl and 3-benzoylpropionyl groups for the protection of hydroxyl functions. Carbohydrate Research, 1974, 33, 391-395.	2.3	8
45	Synthesis and Reactions of Unsaturated Sugars: 6-Deoxyhex-5-enose and 5-Deoxypent-4-enose Derivatives. Advances in Chemistry Series, 1968, , 120-140.	0.6	15