
Jyoti Nangalia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1015853/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Mutation Order on Myeloproliferative Neoplasms. New England Journal of Medicine, 2015, 372, 601-612.	27.0	467
2	Classification and Personalized Prognosis in Myeloproliferative Neoplasms. New England Journal of Medicine, 2018, 379, 1416-1430.	27.0	442
3	The mutational landscape of normal human endometrial epithelium. Nature, 2020, 580, 640-646.	27.8	338
4	Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): an international, randomised, phase 3 trial. Lancet Haematology,the, 2017, 4, e225-e236.	4.6	224
5	Extensive heterogeneity in somatic mutation and selection in the human bladder. Science, 2020, 370, 75-82.	12.6	195
6	Clonal dynamics of haematopoiesis across the human lifespan. Nature, 2022, 606, 343-350.	27.8	160
7	Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nature Communications, 2015, 6, 6691.	12.8	145
8	Life histories of myeloproliferative neoplasms inferred from phylogenies. Nature, 2022, 602, 162-168.	27.8	140
9	The longitudinal dynamics and natural history of clonal haematopoiesis. Nature, 2022, 606, 335-342.	27.8	136
10	Inactivating CUX1 mutations promote tumorigenesis. Nature Genetics, 2014, 46, 33-38.	21.4	111
11	Myeloproliferative neoplasms: from origins to outcomes. Blood, 2017, 130, 2475-2483.	1.4	107
12	DNMT3A mutations occur early or late in patients with myeloproliferative neoplasms and mutation order influences phenotype. Haematologica, 2015, 100, e438-e442.	3.5	105
13	A guideline for the diagnosis and management of polycythaemia vera. A British Society for Haematology Guideline. British Journal of Haematology, 2019, 184, 176-191.	2.5	102
14	Lineage tracing of human development through somatic mutations. Nature, 2021, 595, 85-90.	27.8	79
15	JAK2V617F homozygosity drives a phenotypic switch in myeloproliferative neoplasms, but is insufficient to sustain disease. Blood, 2014, 123, 3139-3151.	1.4	77
16	A guideline for the management of specific situations in polycythaemia vera and secondary erythrocytosis. British Journal of Haematology, 2019, 184, 161-175.	2.5	76
17	Molecular determinants of pathogenesis and clinical phenotype in myeloproliferative neoplasms. Haematologica, 2017, 102, 7-17.	3.5	74
18	Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells. Genome Research, 2015, 25, 814-824.	5.5	69

Jyoti Nangalia

#	Article	IF	CITATIONS
19	The evolving genomic landscape of myeloproliferative neoplasms. Hematology American Society of Hematology Education Program, 2014, 2014, 287-296.	2.5	62
20	Molecular basis of thrombin recognition by protein C inhibitor revealed by the 1.6-â,,« structure of the heparin-bridged complex. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4661-4666.	7.1	59
21	Evaluation of methods to detect CALR mutations in myeloproliferative neoplasms. Leukemia Research, 2015, 39, 82-87.	0.8	55
22	Hydroxycarbamide Plus Aspirin Versus Aspirin Alone in Patients With Essential Thrombocythemia Age 40 to 59 Years Without High-Risk Features. Journal of Clinical Oncology, 2018, 36, 3361-3369.	1.6	54
23	Genome Sequencing during a Patient's Journey through Cancer. New England Journal of Medicine, 2019, 381, 2145-2156.	27.0	50
24	Pathogenesis of Myeloproliferative Disorders. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 101-126.	22.4	38
25	Cooperativity of imprinted genes inactivated by acquired chromosome 20q deletions. Journal of Clinical Investigation, 2013, 123, 2169-2182.	8.2	36
26	JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15190-15195.	7.1	35
27	<i>CALR</i> mutations in myeloproliferative neoplasms: Hidden behind the reticulum. American Journal of Hematology, 2014, 89, 453-456.	4.1	34
28	RECQL5 Suppresses Oncogenic JAK2-Induced Replication Stress and Genomic Instability. Cell Reports, 2015, 13, 2345-2352.	6.4	28
29	Megakaryocytic hyperplasia in myeloproliferative neoplasms is driven by disordered proliferative, apoptotic and epigenetic mechanisms. Journal of Clinical Pathology, 2016, 69, 155-163.	2.0	25
30	Clonal hematopoiesis and therapy-related myeloid neoplasms following neuroblastoma treatment. Blood, 2021, 137, 2992-2997.	1.4	19
31	Unmet clinical needs in the management of CALR-mutated essential thrombocythaemia: a consensus-based proposal from the European LeukemiaNet. Lancet Haematology,the, 2021, 8, e658-e665.	4.6	17
32	Clonal approaches to understanding the impact of mutations on hematologic disease development. Blood, 2019, 133, 1436-1445.	1.4	14
33	Isolated neutropenia during ABVD chemotherapy for Hodgkin lymphoma does not require growth factor support. Leukemia and Lymphoma, 2008, 49, 1530-1536.	1.3	11
34	Genomic heterogeneity in myeloproliferative neoplasms and applications to clinical practice. Blood Reviews, 2020, 42, 100708.	5.7	10
35	Methylation age as a correlate for allele burden, disease status, and clinical response in myeloproliferative neoplasm patients treated with vorinostat. Experimental Hematology, 2019, 79, 26-34.	0.4	8
36	Bayesian networks elucidate complex genomic landscapes in cancer. Communications Biology, 2022, 5, 306.	4.4	5

Jyoti Nangalia

#	Article	IF	CITATIONS
37	Nongenetic stochastic expansion of JAK2V617F-homozygous subclones in polycythemia vera?. Blood, 2014, 124, 3332-3334.	1.4	3
38	Relationship of JAK2V617F Allelic Burden (AB) to Demographics, Disease Characteristics, and Response to Therapy in Persist-1, a Randomized Phase III Study of Pacritinib (PAC) Versus Best Available Therapy (BAT) in Patients (pts) with Primary and Secondary Myelofibrosis (MF). Blood, 2016, 128, 3131-3131.	1.4	2
39	Outcome of Refractory Anemia with Ringed Sideroblasts Associated with Marked Thrombocytosis (RARS-T) In a Large Cohort of Patients. Blood, 2010, 116, 4113-4113.	1.4	1
40	Caught in the antiviral crossfire: Ganciclovir-associated mutagenesis in HSC transplant recipients. Cell Stem Cell, 2021, 28, 1683-1685.	11.1	1
41	Changes in Clonal Architecture Inform MPN Disease Course in Advance of Phenotypic Manifestations. Blood, 2021, 138, 3590-3590.	1.4	1
42	Inherited Blood Cancer Predisposition through Altered Transcription Elongation. Blood, 2021, 138, 629-629.	1.4	0
43	Long-Term Clonal Dynamics upon Allogeneic Haematopoietic Stem Cell Transplantation Revealed Using Somatic Mutations As Clonal Tracking Marks in HSC Donor and Recipient Pairs. Blood, 2021, 138, 3813-3813.	1.4	0