Daniela Corna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10148877/publications.pdf

Version: 2024-02-01

78 6,333 44 77 papers citations h-index g-index

78 78 78 6135
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Empagliflozin protects glomerular endothelial cell architecture in experimental diabetes through the ⟨scp⟩VEGFâ€A⟨ scp⟩ caveolinâ€1 ⟨scp⟩PV⟨ scp⟩â€1 signaling pathway. Journal of Pathology, 2022, 256, 468-479.	4.5	21
2	Therapeutic Small Interfering RNA Targeting Complement C3 in a Mouse Model of C3 Glomerulopathy. Journal of Immunology, 2022, 208, 1772-1781.	0.8	2
3	Shiga Toxin 2 Triggers C3a-Dependent Glomerular and Tubular Injury through Mitochondrial Dysfunction in Hemolytic Uremic Syndrome. Cells, 2022, 11, 1755.	4.1	3
4	Characterization of a Rat Model of Myeloperoxidase-Anti-Neutrophil Cytoplasmic Antibody-Associated Crescentic Glomerulonephritis. Nephron, 2021, 145, 428-444.	1.8	5
5	Human iPSC-derived neural crest stem cells can produce EPO and induce erythropoiesis in anemic mice. Stem Cell Research, 2021, 55, 102476.	0.7	4
6	Post-translational modifications by SIRT3 de-2-hydroxyisobutyrylase activity regulate glycolysis and enable nephrogenesis. Scientific Reports, 2021, 11, 23580.	3.3	10
7	Protective Effects of Human Nonrenal and Renal Stromal Cells and Their Conditioned Media in a Rat Model of Chronic Kidney Disease. Cell Transplantation, 2020, 29, 096368972096546.	2.5	1
8	Manipulating Sirtuin 3 pathway ameliorates renal damage in experimental diabetes. Scientific Reports, 2020, 10, 8418.	3.3	51
9	C3a receptor blockade protects podocytes from injury in diabetic nephropathy. JCI Insight, 2020, 5, .	5.0	46
10	<i>Sirt3</i> Deficiency Shortens Life Span and Impairs Cardiac Mitochondrial Function Rescued by <i>Opa1</i> Gene Transfer. Antioxidants and Redox Signaling, 2019, 31, 1255-1271.	5.4	70
11	Addition of cyclic angiotensin-(1-7) to angiotensin-converting enzyme inhibitor therapy has a positiveÂadd-on effect in experimental diabeticÂnephropathy. Kidney International, 2019, 96, 906-917.	5.2	31
12	Alteration of thyroid hormone signaling triggers the diabetes-induced pathological growth, remodeling, and dedifferentiation of podocytes. JCI Insight, 2019, 4, .	5.0	21
13	SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy. JCI Insight, 2018, 3, .	5.0	114
14	ADAMTS13 Deficiency Shortens the Life Span of Mice With Experimental Diabetes. Diabetes, 2018, 67, 2069-2083.	0.6	8
15	Therapeutic potential of stromal cells of non-renal or renal origin in experimental chronic kidney disease. Stem Cell Research and Therapy, 2018, 9, 220.	5 . 5	26
16	Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function. Nature Communications, 2017, 8, 983.	12.8	124
17	A previously unrecognized role of C3a in proteinuric progressive nephropathy. Scientific Reports, 2016, 6, 28445.	3.3	22
18	Simplified Method to Measure Glomerular Filtration Rate by Iohexol Plasma Clearance in Conscious Rats. Nephron, 2016, 133, 62-70.	1.8	9

#	Article	IF	Citations
19	Therapy with a Selective Cannabinoid Receptor Type 2 Agonist Limits Albuminuria and Renal Injury in Mice with Type 2 Diabetic Nephropathy. Nephron, 2016, 132, 59-69.	1.8	36
20	Functional Human Podocytes Generated in Organoids from Amniotic Fluid Stem Cells. Journal of the American Society of Nephrology: JASN, 2016, 27, 1400-1411.	6.1	51
21	B7–1 Is Not Induced in Podocytes of Human and Experimental Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2016, 27, 999-1005.	6.1	30
22	Renal Primordia Activate Kidney Regenerative Events in a Rat Model of Progressive Renal Disease. PLoS ONE, 2015, 10, e0120235.	2.5	17
23	Effects of MCP-1 Inhibition by Bindarit Therapy in a Rat Model of Polycystic Kidney Disease. Nephron, 2015, 129, 52-61.	1.8	43
24	Shiga Toxin Promotes Podocyte Injury in Experimental Hemolytic Uremic Syndrome via Activation of the Alternative Pathway of Complement. Journal of the American Society of Nephrology: JASN, 2014, 25, 1786-1798.	6.1	52
25	β-Arrestin-1 Drives Endothelin-1–Mediated Podocyte Activation and Sustains Renal Injury. Journal of the American Society of Nephrology: JASN, 2014, 25, 523-533.	6.1	63
26	Analogs of bardoxolone methyl worsen diabetic nephropathy in rats with additional adverse effects. American Journal of Physiology - Renal Physiology, 2013, 304, F808-F819.	2.7	90
27	Renal Expression of FGF23 in Progressive Renal Disease of Diabetes and the Effect of Ace Inhibitor. PLoS ONE, 2013, 8, e70775.	2.5	75
28	In Vivo Maturation of Functional Renal Organoids Formed from Embryonic Cell Suspensions. Journal of the American Society of Nephrology: JASN, 2012, 23, 1857-1868.	6.1	156
29	Lack of the Lectin-like Domain of Thrombomodulin Worsens Shiga Toxin-Associated Hemolytic Uremic Syndrome in Mice. Journal of Immunology, 2012, 189, 3661-3668.	0.8	35
30	Mesenchymal stem cell therapy promotes renal repair by limiting glomerular podocyte and progenitor cell dysfunction in adriamycin-induced nephropathy. American Journal of Physiology - Renal Physiology, 2012, 303, F1370-F1381.	2.7	88
31	Effect of ACE inhibition on glomerular permselectivity and tubular albumin concentration in the renal ablation model. American Journal of Physiology - Renal Physiology, 2011, 300, F1291-F1300.	2.7	13
32	Distinct cardiac and renal effects of ET _A receptor antagonist and ACE inhibitor in experimental type 2 diabetes. American Journal of Physiology - Renal Physiology, 2011, 301, F1114-F1123.	2.7	56
33	Adding a statin to a combination of ACE inhibitor and ARB normalizes proteinuria in experimental diabetes, which translates into full renoprotection. American Journal of Physiology - Renal Physiology, 2010, 299, F1203-F1211.	2.7	49
34	V1/V2 Vasopressin receptor antagonism potentiates the renoprotection of renin–angiotensin system inhibition in rats with renal mass reduction. Kidney International, 2009, 76, 960-967.	5.2	56
35	Unlike each drug alone, lisinopril if combined with avosentan promotes regression of renal lesions in experimental diabetes. American Journal of Physiology - Renal Physiology, 2009, 297, F1448-F1456.	2.7	114
36	Proteasomal Processing of Albumin by Renal Dendritic Cells Generates Antigenic Peptides. Journal of the American Society of Nephrology: JASN, 2009, 20, 123-130.	6.1	88

#	Article	IF	Citations
37	Adenoviral-mediated gene transfer restores plasma ADAMTS13 antigen and activity in ADAMTS13 knockout mice. Gene Therapy, 2009, 16, 1373-1379.	4.5	13
38	Disruption of the Ang II type 1 receptor promotes longevity in mice. Journal of Clinical Investigation, 2009, $119,524-530$.	8.2	434
39	Human Bone Marrow Mesenchymal Stem Cells Accelerate Recovery of Acute Renal Injury and Prolong Survival in Mice. Stem Cells, 2008, 26, 2075-2082.	3.2	351
40	Complement-Mediated Dysfunction of Glomerular Filtration Barrier Accelerates Progressive Renal Injury. Journal of the American Society of Nephrology: JASN, 2008, 19, 1158-1167.	6.1	63
41	Effects of Rosuvastatin on Glomerular Capillary Size-Selectivity Function in Rats with Renal Mass Ablation. American Journal of Nephrology, 2007, 27, 630-638.	3.1	12
42	Insulin-Like Growth Factor-1 Sustains Stem Cell–Mediated Renal Repair. Journal of the American Society of Nephrology: JASN, 2007, 18, 2921-2928.	6.1	294
43	Cyclin-dependent kinase inhibition limits glomerulonephritis and extends lifespan of mice with systemic lupus. Arthritis and Rheumatism, 2007, 56, 1629-1637.	6.7	46
44	Imatinib ameliorates renal disease and survival in murine lupus autoimmune disease. Kidney International, 2006, 70, 97-103.	5.2	71
45	Transcriptional Regulation of Nephrin Gene by Peroxisome Proliferator–Activated Receptor-γ Agonist: Molecular Mechanism of the Antiproteinuric Effect of Pioglitazone. Journal of the American Society of Nephrology: JASN, 2006, 17, 1624-1632.	6.1	76
46	Beneficial Effect of $TGF\hat{l}^2$ Antagonism in Treating Diabetic Nephropathy Depends on When Treatment Is Started. Nephron Experimental Nephrology, 2006, 104, e158-e168.	2.2	43
47	Targeted Deletion of Angiotensin II Type 1A Receptor Does not Protect Mice from Progressive Nephropathy of Overload Proteinuria. Journal of the American Society of Nephrology: JASN, 2004, 15, 2666-2674.	6.1	31
48	Vasopeptidase inhibitor restores the balance of vasoactive hormones in progressive nephropathy. Kidney International, 2004, 66, 1959-1965.	5. 2	52
49	Mesenchymal Stem Cells Are Renotropic, Helping to Repair the Kidney and Improve Function in Acute Renal Failure. Journal of the American Society of Nephrology: JASN, 2004, 15, 1794-1804.	6.1	690
50	Combining lisinopril and L-arginine slows disease progression and reduces endothelin-1 in passive Heymann nephritis. Kidney International, 2003, 64, 857-863.	5.2	13
51	Protein Overload Induces Fractalkine Upregulation in Proximal Tubular Cells through Nuclear Factor κB– and p38 Mitogen-Activated Protein Kinase–Dependent Pathways. Journal of the American Society of Nephrology: JASN, 2003, 14, 2436-2446.	6.1	118
52	Add-On Anti–TGF-β Antibody to ACE Inhibitor Arrests Progressive Diabetic Nephropathy in the Rat. Journal of the American Society of Nephrology: JASN, 2003, 14, 1816-1824.	6.1	177
53	How To Fully Protect the Kidney in a Severe Model of Progressive Nephropathy. Journal of the American Society of Nephrology: JASN, 2002, 13, 2898-2908.	6.1	156
54	Effect of combining ACE inhibitor and statin in severe experimental nephropathy. Kidney International, 2002, 61, 1635-1645.	5.2	103

#	Article	IF	Citations
55	Proximal tubular cells promote fibrogenesis by TGF-β1–mediated induction of peritubular myofibroblasts. Kidney International, 2002, 61, 2066-2077.	5.2	109
56	Angiotensin-Converting Enzyme nhibition Prevents Glomerular-Tubule Disconnection and Atrophy in Passive Heymann Nephritis, an Effect Not Observed with a Calcium Antagonist. American Journal of Pathology, 2001, 159, 1743-1750.	3.8	45
57	Mycophenolate mofetil combined with a cyclooxygenase-2 inhibitor ameliorates murine lupus nephritis. Kidney International, 2001, 60, 653-663.	5.2	49
58	$17\hat{l}^2$ -Estradiol corrects hemostasis in uremic rats by limiting vascular expression of nitric oxide synthases. American Journal of Physiology - Renal Physiology, 2000, 279, F626-F635.	2.7	25
59	Protein traffic activates NF-kB gene signaling and promotes MCP-1–dependent interstitial inflammation. American Journal of Kidney Diseases, 2000, 36, 1226-1241.	1.9	145
60	Renoprotection by nitric oxide donor and lisinopril in the remnant kidney model. American Journal of Kidney Diseases, 1999, 33, 746-753.	1.9	42
61	Antiproteinuric Therapy while Preventing the Abnormal Protein Traffic in Proximal Tubule Abrogates Protein- and Complement-Dependent Interstitial Inflammation in Experimental Renal Disease. Journal of the American Society of Nephrology: JASN, 1999, 10, 804-813.	6.1	99
62	Combining an Antiproteinuric Approach with Mycophenolate Mofetil Fully Suppresses Progressive Nephropathy of Experimental Animals. Journal of the American Society of Nephrology: JASN, 1999, 10, 1542-1549.	6.1	126
63	Renoprotective effect of contemporary blocking of angiotensin II and endothelin-1 in rats with membranous nephropathy1. Kidney International, 1998, 54, 353-359.	5.2	77
64	Experimental Goodpasture's syndrome in Wistar-Kyoto rats immunized with $\hat{l}\pm 3$ chain of type IV collagen. Kidney International, 1998, 54, 1550-1561.	5.2	43
65	Bindarit retards renal disease and prolongs survival in murine lupus autoimmune disease. Kidney International, 1998, 53, 726-734.	5.2	71
66	Pharmacologic control of angiotensin II ameliorates renal disease while reducing renal TGF-beta in experimental mesangioproliferative glomerulonephritis. American Journal of Kidney Diseases, 1998, 31, 453-463.	1.9	55
67	Angiotensin II Blockade Limits Tubular Protein Overreabsorption and the Consequent Upregulation of Endothelin 1 Gene in Experimental Membranous Nephropathy. Nephron Experimental Nephrology, 1998, 6, 121-131.	2.2	44
68	The renoprotective properties of angiotensin-converting enzyme inhibitors in a chronic model of membranous nephropathy are solely due to the inhibition of angiotensin II: Evidence based on comparative studies with a receptor antagonist. American Journal of Kidney Diseases, 1997, 29, 254-264.	1.9	74
69	Mycophenolate mofetil limits renal damage and prolongs life in murine lupus autoimmune disease. Kidney International, 1997, 51, 1583-1589.	5.2	134
70	Renal and systemic nitric oxide synthesis in rats with renal mass reduction. Kidney International, 1997, 52, 171-181.	5.2	138
71	Blocking both type A and B endothelin receptors in the kidney attenuates renal injury and prolongs survival in rats with remnant kidney. American Journal of Kidney Diseases, 1996, 27, 416-423.	1.9	99
72	A Study of Low-Nutrient Diets Used for Aging Studies in the Rat. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 1996, 51A, B270-B275.	3.6	2

#	Article	IF	CITATION
73	A specific endothelin subtype A receptor antagonist protects against injury in renal disease progression. Kidney International, 1993, 44, 440-444.	5.2	215
74	Renal endothelin gene expression is increased in remnant kidney and correlates with disease progression. Kidney International, 1993, 43, 354-358.	5.2	153
75	Renal protective effect of angiotensin-converting enzyme inhibition in aging rats. American Journal of Medicine, 1992, 92, S60-S63.	1.5	31
76	Oral zeranol shortens the prolonged bleeding time of uremic rats. Kidney International, 1990, 38, 96-100.	5.2	5
77	Role of endothelium-derived nitric oxide in the bleeding tendency of uremia Journal of Clinical Investigation, 1990, 86, 1768-1771.	8.2	110
78	Sequence of Glomerular Changes in Experimental Endotoxemia: A Possible Model of Hemolytic Uremic Syndrome. Nephron, 1989, 53, 330-337.	1.8	19