
Paul J Coucke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1014515/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nature Genetics, 2005, 37, 275-281.	21.4	1,543
2	Aneurysm Syndromes Caused by Mutations in the TGF-β Receptor. New England Journal of Medicine, 2006, 355, 788-798.	27.0	1,490
3	Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Human Mutation, 2007, 28, 209-221.	2.5	620
4	Effect of Mutation Type and Location on Clinical Outcome in 1,013 Probands with Marfan Syndrome or Related Phenotypes and FBN1 Mutations: An International Study. American Journal of Human Genetics, 2007, 81, 454-466.	6.2	485
5	Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis. Nature Genetics, 2004, 36, 1213-1218.	21.4	410
6	Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. Nature Genetics, 2005, 37, 282-288.	21.4	367
7	Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nature Genetics, 2006, 38, 452-457.	21.4	354
8	Mutations in the human α-tectorin gene cause autosomal dominant non-syndromic hearing impairment. Nature Genetics, 1998, 19, 60-62.	21.4	323
9	Arterial tortuosity syndrome: clinical and molecular findings in 12 newly identified families. Human Mutation, 2008, 29, 150-158.	2.5	295
10	Homozygosity for a missense mutation in fibulin-5 (FBLN5) results in a severe form of cutis laxa. Human Molecular Genetics, 2002, 11, 2113-2118.	2.9	283
11	Spectrum of mutations in fucosidosis. European Journal of Human Genetics, 1999, 7, 60-67.	2.8	221
12	Phenotypic spectrum of the SMAD3-related aneurysms–osteoarthritis syndrome. Journal of Medical Genetics, 2012, 49, 47-57.	3.2	221
13	Comprehensive molecular screening of theFBN1gene favors locus homogeneity of classical Marfan syndrome. Human Mutation, 2004, 24, 140-146.	2.5	210
14	Mutations in Fibrillin-1 Cause Congenital Scleroderma: Stiff Skin Syndrome. Science Translational Medicine, 2010, 2, 23ra20.	12.4	195
15	Two Frequent Missense Mutations in Pendred Syndrome. Human Molecular Genetics, 1998, 7, 1099-1104.	2.9	174
16	Pseudoxanthoma Elasticum-Like Phenotype with Cutis Laxa and Multiple Coagulation Factor Deficiency Represents a Separate Genetic Entity. Journal of Investigative Dermatology, 2007, 127, 581-587.	0.7	168
17	MASA syndrome is due to mutations in the neural cell adhesion gene L1CAM. Nature Genetics, 1994, 7, 408-413.	21.4	165
18	Mutation detection in the ABCC6 gene and genotype phenotype analysis in a large international case series affected by pseudoxanthoma elasticum. Journal of Medical Genetics, 2007, 44, 621-628.	3.2	161

#	Article	IF	CITATIONS
19	Mutations in the KCNQ4 gene are responsible for autosomal dominant deafness in four DFNA2 families. Human Molecular Genetics, 1999, 8, 1321-1328.	2.9	154
20	Clinical and Molecular Study of 320 Children With Marfan Syndrome and Related Type I Fibrillinopathies in a Series of 1009 Probands With Pathogenic <i>FBN1</i> Mutations. Pediatrics, 2009, 123, 391-398.	2.1	146
21	Three arginine to cysteine substitutions in the pro-alpha (I)-collagen chain cause Ehlers-Danlos syndrome with a propensity to arterial rupture in early adulthood. Human Mutation, 2007, 28, 387-395.	2.5	139
22	Linkage of Autosomal Dominant Hearing Loss to the Short Arm of Chromosome 1 in Two Families. New England Journal of Medicine, 1994, 331, 425-431.	27.0	137
23	Aggressive Cardiovascular Phenotype of Aneurysms-Osteoarthritis Syndrome Caused by Pathogenic SMAD3 Variants. Journal of the American College of Cardiology, 2012, 60, 397-403.	2.8	135
24	Novel MYH11 and ACTA2 mutations reveal a role for enhanced TGFÎ ² signaling in FTAAD. International Journal of Cardiology, 2013, 165, 314-321.	1.7	134
25	Comprehensive molecular analysis demonstrates type V collagen mutations in over 90% of patients with classic EDS and allows to refine diagnostic criteria. Human Mutation, 2012, 33, 1485-1493.	2.5	133
26	Altered TGFβ signaling and cardiovascular manifestations in patients with autosomal recessive cutis laxa type I caused by fibulin-4 deficiency. European Journal of Human Genetics, 2010, 18, 895-901.	2.8	132
27	Genetic screening of LCA in Belgium: predominance of CEP290 and identification of potential modifier alleles in AHI1 of CEP290-related phenotypes. Human Mutation, 2010, 31, E1709-E1766.	2.5	127
28	The molecular basis of classic Ehlers-Danlos syndrome: A comprehensive study of biochemical and molecular findings in 48 unrelated patients. Human Mutation, 2005, 25, 28-37.	2.5	117
29	New insights into the pathogenesis of autosomalâ€dominant cutis laxa with report of five <i>ELN</i> mutations. Human Mutation, 2011, 32, 445-455.	2.5	116
30	A mutation update on the LDS-associated genes <i>TGFB2/3</i> and <i>SMAD2/3</i> . Human Mutation, 2018, 39, 621-634.	2.5	116
31	Stickler syndrome caused by COL2A1 mutations: genotype–phenotype correlation in a series of 100 patients. European Journal of Human Genetics, 2010, 18, 872-880.	2.8	114
32	Homozygous Mutations in IHH Cause Acrocapitofemoral Dysplasia, an Autosomal Recessive Disorder with Cone-Shaped Epiphyses in Hands and Hips. American Journal of Human Genetics, 2003, 72, 1040-1046.	6.2	113
33	Localization of a gene for otosclerosis to chromosome 15q25-q26. Human Molecular Genetics, 1998, 7, 285-290.	2.9	112
34	Recurrent Mutation in the First Zinc Finger of the Orphan Nuclear Receptor NR2E3 Causes Autosomal Dominant Retinitis Pigmentosa. American Journal of Human Genetics, 2007, 81, 147-157.	6.2	110
35	Deficiency for the ER-stress transducer OASIS causes severe recessive osteogenesis imperfecta in humans. Orphanet Journal of Rare Diseases, 2013, 8, 154.	2.7	98
36	Hearing loss in Waardenburg syndrome: a systematic review. Clinical Genetics, 2016, 89, 416-425.	2.0	98

#	Article	IF	CITATIONS
37	Zebrafish Collagen Type I: Molecular and Biochemical Characterization of the Major Structural Protein in Bone and Skin. Scientific Reports, 2016, 6, 21540.	3.3	97
38	A Mutation in CABP2 , Expressed in Cochlear Hair Cells, Causes Autosomal-Recessive Hearing Impairment. American Journal of Human Genetics, 2012, 91, 636-645.	6.2	96
39	Total absence of the Â2(I) chain of collagen type I causes a rare form of Ehlers-Danlos syndrome with hypermobility and propensity to cardiac valvular problems. Journal of Medical Genetics, 2005, 43, e36-e36.	3.2	95
40	A duplication in the L1CAM gene associated with X–linked hydrocephalus. Nature Genetics, 1993, 4, 421-425.	21.4	91
41	A Second Gene for Otosclerosis, OTSC2, Maps to Chromosome 7q34-36. American Journal of Human Genetics, 2001, 68, 495-500.	6.2	91
42	The new Ghent criteria for Marfan syndrome: what do they change?. Clinical Genetics, 2012, 81, 433-442.	2.0	90
43	Localization of a gene for non-syndromic hearing loss (DFNA5) to chromosome 7p15. Human Molecular Genetics, 1995, 4, 2159-2163.	2.9	89
44	Linkage of a gene for dominant non-syndromic deafness to chromosome 19. Human Molecular Genetics, 1995, 4, 1073-1076.	2.9	86
45	Three new families with arterial tortuosity syndrome. American Journal of Medical Genetics Part A, 2004, 131A, 134-143.	2.4	85
46	Fibulin-5 mutations: mechanisms of impaired elastic fiber formation in recessive cutis laxa. Human Molecular Genetics, 2006, 15, 3379-3386.	2.9	84
47	Contribution of molecular analyses in diagnosing Marfan syndrome and type I fibrillinopathies: an international study of 1009 probands. Journal of Medical Genetics, 2008, 45, 384-390.	3.2	83
48	Novel clinico-molecular insights in pseudoxanthoma elasticum provide an efficient molecular screening method and a comprehensive diagnostic flowchart. Human Mutation, 2008, 29, 205-205.	2.5	82
49	BATCH-CE: Batch analysis of Next-Generation Sequencing data for genome editing assessment. Scientific Reports, 2016, 6, 30330.	3.3	82
50	Mutations in ATP6V1E1 or ATP6V1A Cause Autosomal-Recessive Cutis Laxa. American Journal of Human Genetics, 2017, 100, 216-227.	6.2	82
51	Comprehensive clinical and molecular assessment of 32 probands with congenital contractural arachnodactyly: Report of 14 novel mutations and review of the literature. Human Mutation, 2009, 30, 334-341.	2.5	81
52	Recessive osteogenesis imperfecta caused by LEPRE1 mutations: clinical documentation and identification of the splice form responsible for prolyl 3-hydroxylation. Journal of Medical Genetics, 2009, 46, 233-241.	3.2	77
53	CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	77
54	Zebrafish type I collagen mutants faithfully recapitulate human type I collagenopathies. Proceedings of the United States of America, 2018, 115, E8037-E8046.	7.1	77

#	Article	IF	CITATIONS
55	DNA Diagnostics of Hereditary Hearing Loss: A Targeted Resequencing Approach Combined with a Mutation Classification System. Human Mutation, 2016, 37, 812-819.	2.5	76
56	GermlineLEMD3 mutations are rare in sporadic patients with isolated melorheostosis. Human Mutation, 2006, 27, 290-290.	2.5	75
57	Defective protein glycosylation in patients with cutis laxa syndrome. European Journal of Human Genetics, 2005, 13, 414-421.	2.8	74
58	Zebrafish: A Resourceful Vertebrate Model to Investigate Skeletal Disorders. Frontiers in Endocrinology, 2020, 11, 489.	3.5	74
59	A study of the clinical and radiological features in a cohort of 93 patients with a <i>COL2A1</i> mutation causing spondyloepiphyseal dysplasia congenita or a related phenotype. American Journal of Medical Genetics, Part A, 2015, 167, 461-475.	1.2	73
60	Low serum vitamin K in PXE results in defective carboxylation of mineralization inhibitors similar to the GGCX mutations in the PXE-like syndrome. Laboratory Investigation, 2010, 90, 895-905.	3.7	72
61	The phenotypic spectrum in patients with arginine to cysteine mutations in the COL2A1 gene. Journal of Medical Genetics, 2005, 43, 406-413.	3.2	71
62	Applying massive parallel sequencing to molecular diagnosis of Marfan and Loeys-Dietz syndromes. Human Mutation, 2011, 32, 1053-1062.	2.5	71
63	Radiological sacroiliitis, a hallmark of spondylitis, is linked with CARD15 gene polymorphisms in patients with Crohn's disease. Annals of the Rheumatic Diseases, 2004, 63, 1131-1134.	0.9	70
64	IRF2BPL Is Associated with Neurological Phenotypes. American Journal of Human Genetics, 2018, 103, 245-260.	6.2	69
65	Comprehensive Clinical and Molecular Analysis of 12 Families with Type 1 Recessive Cutis Laxa. Human Mutation, 2013, 34, 111-121.	2.5	67
66	Clinical and mutation-type analysis from an international series of 198 probands with a pathogenic FBN1 exons 24–32 mutation. European Journal of Human Genetics, 2009, 17, 491-501.	2.8	66
67	Arterial tortuosity syndrome: 40 new families and literature review. Genetics in Medicine, 2018, 20, 1236-1245.	2.4	66
68	Loss of Type I Collagen Telopeptide Lysyl Hydroxylation Causes Musculoskeletal Abnormalities in a Zebrafish Model of Bruck Syndrome. Journal of Bone and Mineral Research, 2016, 31, 1930-1942.	2.8	65
69	Gene panel sequencing in heritable thoracic aortic disorders and related entities – results of comprehensive testing in a cohort of 264 patients. Orphanet Journal of Rare Diseases, 2015, 10, 9.	2.7	62
70	A sensitive and specific diagnostic test for hearing loss using a microdroplet PCRâ€based approach and next generation sequencing. American Journal of Medical Genetics, Part A, 2013, 161, 145-152.	1.2	61
71	MicroCT-based phenomics in the zebrafish skeleton reveals virtues of deep phenotyping in a distributed organ system. ELife, 2017, 6, .	6.0	60
72	Mutations in the KCNQ4 K+ channel gene, responsible for autosomal dominant hearing loss, cluster in the channel pore region. American Journal of Medical Genetics Part A, 2000, 93, 184-187.	2.4	59

#	Article	IF	CITATIONS
73	The Ghent Marfan Trial — A randomized, double-blind placebo controlled trial with losartan in Marfan patients treated with β-blockers. International Journal of Cardiology, 2012, 157, 354-358.	1.7	59
74	<i>RNF216</i> mutations as a novel cause of autosomal recessive Huntington-like disorder. Neurology, 2015, 84, 1760-1766.	1.1	59
75	Massive parallel amplicon sequencing of the breast cancer genes BRCA1 and BRCA2: opportunities, challenges, and limitations. Human Mutation, 2011, 32, 335-344.	2.5	58
76	Thoracic aortic-aneurysm and dissection in association with significant mitral valve disease caused by mutations in TGFB2. International Journal of Cardiology, 2013, 165, 584-587.	1.7	58
77	COL5A1 signal peptide mutations interfere with protein secretion and cause classic Ehlers-Danlos syndrome. Human Mutation, 2009, 30, E395-E403.	2.5	57
78	Linkage Analysis of Progressive Hearing Loss in Five Extended Families Maps the DFNA2 Gene to a 1.25-Mb Region on Chromosome 1p. Genomics, 1997, 41, 70-74.	2.9	52
79	GLUT10 is required for the development of the cardiovascular system and the notochord and connects mitochondrial function to TGFÎ ² signaling. Human Molecular Genetics, 2012, 21, 1248-1259.	2.9	52
80	Consanguineous nuclear families used to identify a new locus for recessive non-syndromic hearing loss on 14q. Human Molecular Genetics, 1995, 4, 1643-1648.	2.9	51
81	The Genetics of Soft Connective Tissue Disorders. Annual Review of Genomics and Human Genetics, 2015, 16, 229-255.	6.2	50
82	Identification of binding partners interacting with the α1-N-propeptide of typeÂV collagen. Biochemical Journal, 2011, 433, 371-381.	3.7	49
83	Molecular diagnostics for congenital hearing loss including 15 deafness genes using a next generation sequencing platform. BMC Medical Genomics, 2012, 5, 17.	1.5	49
84	A mutational hot spot in theKCNQ4 gene responsible for autosomal dominant hearing impairment. Human Mutation, 2002, 20, 15-19.	2.5	48
85	Osteogenesis imperfecta: the audiological phenotype lacks correlation with the genotype. Orphanet Journal of Rare Diseases, 2011, 6, 88.	2.7	48
86	Novel pathogenic COL11A1/COL11A2 variants in Stickler syndrome detected by targeted NGS and exome sequencing. Molecular Genetics and Metabolism, 2014, 113, 230-235.	1.1	48
87	Longitudinal and Cross-Sectional Phenotype Analysis in a New, Large Dutch DFNA2/ <i>KCNQ4</i> Family. Annals of Otology, Rhinology and Laryngology, 2002, 111, 267-274.	1.1	47
88	Utility of molecular analyses in the exploration of extreme intrafamilial variability in the Marfan syndrome. Clinical Genetics, 2007, 72, 188-198.	2.0	47
89	Localization of a novel gene for nonsyndromic hearing loss (DFNB17) to chromosome region 7q31. American Journal of Medical Genetics Part A, 1998, 78, 107-113.	2.4	45
90	Refinement of the critical 2p25.3 deletion region: the role of MYT1L in intellectual disability and obesity. Genetics in Medicine, 2015, 17, 460-466.	2.4	45

#	Article	IF	CITATIONS
91	Inherited Nonsyndromic Hearing Loss: An Audiovestibular Study in a Large Family With Autosomal Dominant Progressive Hearing Loss Related to DFNA2. JAMA Otolaryngology, 1997, 123, 573-577.	1.2	43
92	Flexible, Scalable, and Efficient Targeted Resequencing on a Benchtop Sequencer for Variant Detection in Clinical Practice. Human Mutation, 2015, 36, 379-387.	2.5	43
93	Defective Proteolytic Processing of Fibrillar Procollagens and Prodecorin Due to Biallelic <i>BMP1</i> Mutations Results in a Severe, Progressive Form of Osteogenesis Imperfecta. Journal of Bone and Mineral Research, 2015, 30, 1445-1456.	2.8	42
94	Czech dysplasia metatarsal type: another type II collagen disorder. European Journal of Human Genetics, 2007, 15, 1269-1275.	2.8	41
95	Neonatal progeroid variant of Marfan syndrome with congenital lipodystrophy results from mutations at the 3′ end of FBN1 gene. European Journal of Medical Genetics, 2014, 57, 230-234.	1.3	41
96	Severe congenital cutis laxa with cardiovascular manifestations due to homozygous deletions in ALDH18A1. Molecular Genetics and Metabolism, 2014, 112, 310-316.	1.1	41
97	Pathogenic <i>FBN1</i> mutations in 146 adults not meeting clinical diagnostic criteria for Marfan syndrome: Further delineation of type 1 fibrillinopathies and focus on patients with an isolated major criterion. American Journal of Medical Genetics, Part A, 2009, 149A, 854-860.	1.2	40
98	Audiometric, surgical, and genetic findings in 15 ears of patients with osteogenesis imperfecta. Laryngoscope, 2009, 119, 1171-1179.	2.0	40
99	Practical Tools to Implement Massive Parallel Pyrosequencing of PCR Products in Next Generation Molecular Diagnostics. PLoS ONE, 2011, 6, e25531.	2.5	40
100	A Gene for Fluctuating, Progressive Autosomal Dominant Nonsyndromic Hearing Loss, DFNA16, Maps to Chromosome 2q23-24.3. American Journal of Human Genetics, 1999, 65, 141-150.	6.2	39
101	Genetic Defects in TAPT1 Disrupt Ciliogenesis and Cause a Complex Lethal Osteochondrodysplasia. American Journal of Human Genetics, 2015, 97, 521-534.	6.2	39
102	X-linked liver glycogenosis type II (XLG II) is caused by mutations in PHKA2, the gene encoding the liver alpha subunit of phosphorylase kinase. Human Molecular Genetics, 1996, 5, 649-652.	2.9	38
103	Characterization of a distinct lethal arteriopathy syndrome in twenty-two infants associated with an identical, novel mutation in FBLN4 gene, confirms fibulin-4 as a critical determinant of human vascular elastogenesis. Orphanet Journal of Rare Diseases, 2012, 7, 61.	2.7	38
104	Expressed Repeat Elements Improve RT-qPCR Normalization across a Wide Range of Zebrafish Gene Expression Studies. PLoS ONE, 2014, 9, e109091.	2.5	38
105	Type I Procollagen C-Propeptide Defects: Study of Genotype-Phenotype Correlation and Predictive Role of Crystal Structure. Human Mutation, 2014, 35, n/a-n/a.	2.5	38
106	Phenomics-Based Quantification of CRISPR-Induced Mosaicism in Zebrafish. Cell Systems, 2020, 10, 275-286.e5.	6.2	38
107	Deafness linked to DFNA2: one locus but how many genes?. Nature Genetics, 1999, 21, 263-263.	21.4	35
108	Perturbation of specific pro-mineralizing signalling pathways in human and murine pseudoxanthoma elasticum. Orphanet Journal of Rare Diseases, 2014, 9, 66.	2.7	35

#	Article	IF	CITATIONS
109	A combined defect in the biosynthesis of N- and O-glycans in patients with cutis laxa and neurological involvement: the biochemical characteristics. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1741, 156-164.	3.8	34
110	Association between bone mineral density and hearing loss in osteogenesis imperfecta. Laryngoscope, 2012, 122, 401-408.	2.0	33
111	Twenty patients including 7 probands with autosomal dominant cutis laxa confirm clinical and molecular homogeneity. Orphanet Journal of Rare Diseases, 2013, 8, 36.	2.7	33
112	COL2A1–related skeletal dysplasias with predominant metaphyseal involvement. American Journal of Medical Genetics, Part A, 2007, 143A, 161-167.	1.2	32
113	Added value of infrared, red-free and autofluorescence fundus imaging in pseudoxanthoma elasticum. British Journal of Ophthalmology, 2010, 94, 479-486.	3.9	32
114	<i>CARD15</i> polymorphisms are associated with anti- <i>Saccharomyces cerevisiae</i> antibodies in caucasian Crohn's disease patients. Clinical and Experimental Immunology, 2005, 140, 354-359.	2.6	30
115	Absence of arterial phenotype in mice with homozygous <i>slc2A10</i> missense substitutions. Genesis, 2008, 46, 385-389.	1.6	30
116	The Gene for Pendred Syndrome Is Located between D7S501 and D7S692 in a 1.7-cM Region on Chromosome 7q. Genomics, 1997, 40, 48-54.	2.9	29
117	Novel deletions causing pseudoxanthoma elasticum underscore the genomic instability of the ABCC6 region. Journal of Human Genetics, 2010, 55, 112-117.	2.3	29
118	Congenital Fixed Dilated Pupils Due to ACTA2– Multisystemic Smooth Muscle Dysfunction Syndrome. Journal of Neuro-Ophthalmology, 2014, 34, 137-143.	0.8	29
119	Altered cytoskeletal organization characterized lethal but not surviving Brtl ^{+/â^'} mice: insight on phenotypic variability in osteogenesis imperfecta. Human Molecular Genetics, 2015, 24, 6118-6133.	2.9	29
120	Missense Mutations in LRP5 Are Not a Common Cause of Idiopathic Osteoporosis in Adult Men. Journal of Bone and Mineral Research, 2005, 20, 1951-1959.	2.8	28
121	Pseudoxanthoma Elasticum with Generalized Retinal Dysfunction, a Common Finding?. , 2007, 48, 4250.		28
122	Ehlers-Danlos Syndrome, Hypermobility Type, Is Linked to Chromosome 8p22-8p21.1 in an Extended Belgian Family. Disease Markers, 2015, 2015, 1-9.	1.3	28
123	Pathogenic variants in the <i>ABCC6</i> gene are associated with an increased risk for ischemic stroke. Brain Pathology, 2018, 28, 822-831.	4.1	28
124	Maximizing CRISPR/Cas9 phenotype penetrance applying predictive modeling of editing outcomes in Xenopus and zebrafish embryos. Scientific Reports, 2020, 10, 14662.	3.3	28
125	Functional haplotypes of PADI4: relevance for rheumatoid arthritis specific synovial intracellular citrullinated proteins and anticitrullinated protein antibodies. Annals of the Rheumatic Diseases, 2005, 64, 1316-1320.	0.9	26
126	Mutationâ€based growth charts for SEDC and other <i>COL2A1</i> related dysplasias. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2012, 160C, 205-216.	1.6	26

#	Article	IF	CITATIONS
127	Genetic analysis of osteogenesis imperfecta in the <scp>P</scp> alestinian population: molecular screening of 49 affected families. Molecular Genetics & Genomic Medicine, 2018, 6, 15-26.	1.2	26
128	Nonsyndromic Autosomal Dominant Progressive Sensorineural Hearing Loss: Audiologic Analysis of a Pedigree Linked to DFNA2. Laryngoscope, 1998, 108, 74-80.	2.0	25
129	Audiologic Phenotype of Osteogenesis Imperfecta. Otology and Neurotology, 2012, 33, 115-122.	1.3	25
130	Efficiency of Exome Sequencing for the Molecular Diagnosis of Pseudoxanthoma Elasticum. Journal of Investigative Dermatology, 2015, 135, 992-998.	0.7	25
131	Glucose transporter type 10—lacking in arterial tortuosity syndrome—facilitates dehydroascorbic acid transport. FEBS Letters, 2016, 590, 1630-1640.	2.8	25
132	Whole exome sequencing is an efficient, sensitive and specific method of mutation detection in osteogenesis imperfecta and Marfan syndrome. BoneKEy Reports, 2013, 2, 456.	2.7	24
133	Exome sequencing revealed a novel biallelic deletion in the <i>DCAF17</i> gene underlying Woodhouse Sakati syndrome. Clinical Genetics, 2016, 90, 263-269.	2.0	23
134	Homozygosity for CREB3L1 premature stop codon in first case of recessive osteogenesis imperfecta associated with OASIS-deficiency to survive infancy. Bone, 2018, 114, 268-277.	2.9	23
135	Visceral and testicular calcifications as part of the phenotype in pseudoxanthoma elasticum: ultrasound findings in Belgian patients and healthy carriers. British Journal of Radiology, 2006, 79, 221-225.	2.2	22
136	A homozygous pathogenic missense variant broadens the phenotypic and mutational spectrum of CREB3L1-related osteogenesis imperfecta. Human Molecular Genetics, 2019, 28, 1801-1809.	2.9	21
137	Complementary Deoxyribonucleic Acid Cloning and Characterization of a Putative Human Axonemal Dynein Light Chain Gene. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 3047-3053.	3.6	21
138	Tailoring the American College of Medical Genetics and Genomics and the Association for Molecular Pathology Guidelines for the Interpretation of Sequenced Variants in the <i>FBN1</i> Gene for Marfan Syndrome. Circulation Genomic and Precision Medicine, 2018, 11, e002039.	3.6	20
139	Molecular study of chromosome 15 in 22 patients with Angelman syndrome. Human Genetics, 1993, 90, 489-495.	3.8	19
140	Recurrence of achondrogenesis type II within the same family: Evidence for germline mosaicism. American Journal of Medical Genetics Part A, 2004, 126A, 308-312.	2.4	19
141	Stapes Surgery in Osteogenesis Imperfecta: Retrospective Analysis of 34 Operated Ears. Audiology and Neuro-Otology, 2012, 17, 198-206.	1.3	19
142	Dermatosparaxis (<scp>E</scp> hlers– <scp>D</scp> anlos Type <scp>VIIC</scp>): Prenatal Diagnosis Following a Previous Pregnancy With Unexpected Skull Fractures at Delivery. American Journal of Medical Genetics, Part A, 2013, 161, 1122-1125.	1.2	19
143	The Soft Tissue Immunologic Response to Hydroxyapatiteâ€Coated Transmucosal Implant Surfaces: A Study in Humans. Clinical Implant Dentistry and Related Research, 2015, 17, e65-74.	3.7	19
144	An Exploratory Caseâ€Control Study on the Impact of <scp><i>IL</i></scp> <i>â€1</i> Gene Polymorphisms on Early Implant Failure. Clinical Implant Dentistry and Related Research, 2016, 18, 234-240.	3.7	19

#	Article	lF	CITATIONS
145	Hypomorphic zebrafish models mimic the musculoskeletal phenotype of β4GalT7-deficient Ehlers-Danlos syndrome. Matrix Biology, 2020, 89, 59-75.	3.6	19
146	Lrp5 Mutant and Crispant Zebrafish Faithfully Model Human Osteoporosis, Establishing the Zebrafish as a Platform for CRISPR-Based Functional Screening of Osteoporosis Candidate Genes. Journal of Bone and Mineral Research, 2020, 36, 1749-1764.	2.8	19
147	Generation and Validation of a Complete Knockout Model of abcc6a in Zebrafish. Journal of Investigative Dermatology, 2018, 138, 2333-2342.	0.7	18
148	A clinical scoring system for congenital contractural arachnodactyly. Genetics in Medicine, 2020, 22, 124-131.	2.4	17
149	Reassessment of causality of ABCC6 missense variants associated with pseudoxanthoma elasticum based on Sherloc. Genetics in Medicine, 2021, 23, 131-139.	2.4	17
150	Atypical presentation of pseudoxanthoma elasticum with abdominal cutis laxa: Evidence for a spectrum of ectopic calcification disorders?. American Journal of Medical Genetics, Part A, 2011, 155, 2855-2859.	1.2	16
151	Second family with the bostonâ€type craniosynostosis syndrome: Novel mutation and expansion of the clinical spectrum. American Journal of Medical Genetics, Part A, 2013, 161, 2352-2357.	1.2	16
152	Met>Val substitution in a highly conserved region of the pro-Â1(I) collagen C-propeptide domain causes alternative splicing and a mild EDS/OI phenotype. Journal of Medical Genetics, 2004, 41, e96-e96.	3.2	15
153	Analysing 454 amplicon resequencing experiments using the modular and database oriented Variant Identification Pipeline. BMC Bioinformatics, 2010, 11, 269.	2.6	15
154	GLUT10—Lacking in Arterial Tortuosity Syndrome—Is Localized to the Endoplasmic Reticulum of Human Fibroblasts. International Journal of Molecular Sciences, 2017, 18, 1820.	4.1	15
155	Spondyloperipheral dysplasia as the mosaic form of platyspondylic lethal skeletal dyplasia torrance type in mother and fetus with the same <i>COL2A1</i> mutation. American Journal of Medical Genetics, Part A, 2012, 158A, 1948-1952.	1.2	14
156	A mild form of Stickler syndrome type II caused by mosaicism of COL11A1. European Journal of Medical Genetics, 2017, 60, 275-278.	1.3	14
157	Zebrafish models for ectopic mineralization disorders: practical issues from morpholino design to post-injection observations. Frontiers in Genetics, 2013, 4, 74.	2.3	13
158	Characterization of a novel mutation in PAX9 gene in a family with non-syndromic dental agenesis. Archives of Oral Biology, 2016, 71, 110-116.	1.8	13
159	Tissueâ€specific mosaicism for a lethal osteogenesis imperfecta <i>COL1A1</i> mutation causes mild OI/EDS overlap syndrome. American Journal of Medical Genetics, Part A, 2017, 173, 1047-1050.	1.2	13
160	MicroCT-Based Phenomics in the Zebrafish Skeleton Reveals Virtues of Deep Phenotyping in a Distributed Organ System. Zebrafish, 2018, 15, 77-78.	1.1	13
161	Marfan Syndrome and Related Heritable Thoracic Aortic Aneurysms and Dissections. Current Pharmaceutical Design, 2015, 21, 4061-4075.	1.9	13
162	Minocycline Attenuates Excessive DNA Damage Response and Reduces Ectopic Calcification in Pseudoxanthoma Elasticum. Journal of Investigative Dermatology, 2022, 142, 1629-1638.e6.	0.7	12

#	Article	IF	CITATIONS
163	Shortcutting the diagnostic odyssey: the multidisciplinary Program for Undiagnosed Rare Diseases in adults (UD-PrOZA). Orphanet Journal of Rare Diseases, 2022, 17, .	2.7	12
164	The Dfna2 Locus for Hearing Impairment: Two Genes Regulating K+ Ion Recycling in the Inner Ear. International Journal of Audiology, 1999, 33, 285-289.	0.7	11
165	A Dutch family with progressive sensorineural hearing impairment linked to the DFNA2 region. European Archives of Oto-Rhino-Laryngology, 2000, 257, 62-67.	1.6	11
166	Comparison of Methods for In-House Screening of HLA-B*57:01 to Prevent Abacavir Hypersensitivity in HIV-1 Care. PLoS ONE, 2015, 10, e0123525.	2.5	11
167	Next Generation Sequencing to Determine the Cystic Fibrosis Mutation Spectrum in Palestinian Population. Disease Markers, 2015, 2015, 1-6.	1.3	11
168	Future perspectives of genome-scale sequencing. Acta Clinica Belgica, 2018, 73, 7-10.	1.2	11
169	b3galt6 Knock-Out Zebrafish Recapitulate β3GalT6-Deficiency Disorders in Human and Reveal a Trisaccharide Proteoglycan Linkage Region. Frontiers in Cell and Developmental Biology, 2020, 8, 597857.	3.7	11
170	Arterial Tortuosity Syndrome: An Ascorbate Compartmentalization Disorder?. Antioxidants and Redox Signaling, 2021, 34, 875-889.	5.4	11
171	Human germline nuclear transfer to overcome mitochondrial disease and failed fertilization after ICSI. Journal of Assisted Reproduction and Genetics, 2022, 39, 609-618.	2.5	11
172	Cytogenetic and array GH characterization of a 6q27 deletion in a patient with developmental delay and features of Ehlers–Danlos syndrome. American Journal of Medical Genetics, Part A, 2010, 152A, 1314-1317.	1.2	10
173	Chromosomal Mapping of Two Members of the Human Dynein Gene Family to Chromosome Regions 7p15 and 11q13 near the Deafness Loci DFNA 5 and DFNA 11. Genomics, 1997, 44, 362-364.	2.9	9
174	Absence of Cardiovascular Manifestations in a Haploinsufficient Tgfbr1 Mouse Model. PLoS ONE, 2014, 9, e89749.	2.5	9
175	Accurate quantification of homologous recombination in zebrafish: brca2 deficiency as a paradigm. Scientific Reports, 2017, 7, 16518.	3.3	9
176	Genetic study of nonâ€syndromic tooth agenesis through the screening of paired box 9, msh homeobox 1, axin 2, and Wnt family member 10A genes: a caseâ€series. European Journal of Oral Sciences, 2018, 126, 24-32.	1.5	8
177	The corneoscleral shape in Marfan syndrome. Acta Ophthalmologica, 2021, 99, 405-410.	1.1	8
178	<scp><i>VEGFA</i></scp> variants as prognostic markers for the retinopathy in pseudoxanthoma elasticum. Clinical Genetics, 2020, 98, 74-79.	2.0	8
179	A genome-wide linkage scan for low spinal bone mineral density in a single extended family confirms linkage to 1p36.3. European Journal of Human Genetics, 2008, 16, 970-976.	2.8	7
180	A novel case of autosomal dominant cutis laxa in a consanguineous family: report and literature review. Clinical Dysmorphology, 2017, 26, 142-147.	0.3	7

#	Article	IF	CITATIONS
181	Serum Calcification Propensity T50 Associates with Disease Severity in Patients with Pseudoxanthoma Elasticum. Journal of Clinical Medicine, 2022, 11, 3727.	2.4	7
182	Mutation Analysis of the <i>FBN1</i> Gene in Patients With Marfan Syndrome. , 2006, 126, 81-96.		6
183	Variability of aortic stiffness is not associated with the fibrillin 1 genotype in patients with Marfan's syndrome. Heart, 2006, 92, 977-978.	2.9	6
184	Sequence variants in nine different genes underlying rare skin disorders in 10 consanguineous families. International Journal of Dermatology, 2017, 56, 1406-1413.	1.0	6
185	Photoconvertible fluorescent proteins: a versatile tool in zebrafish skeletal imaging. Journal of Fish Biology, 2021, 98, 1007-1017.	1.6	6
186	Rare Modifier Variants Alter the Severity of Cardiovascular Disease in Pseudoxanthoma Elasticum: Identification of Novel Candidate Modifier Genes and Disease Pathways Through Mixture of Effects Analysis. Frontiers in Cell and Developmental Biology, 2021, 9, 612581.	3.7	6
187	A Reassessment of Copy Number Variations in Congenital Heart Defects: Picturing the Whole Genome. Genes, 2021, 12, 1048.	2.4	6
188	CRISPR-SID: Identifying EZH2 as a druggable target for desmoid tumors via inÂvivo dependency mapping. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	6
189	Two brothers with mental retardation discordant for the Fragile-X syndrome. American Journal of Medical Genetics Part A, 1990, 36, 122-125.	2.4	5
190	Functional Polymorphism in Gamma-Glutamylcarboxylase is a Risk Factor for Severe Neonatal Hemorrhage. Journal of Pediatrics, 2011, 159, 347-349.	1.8	5
191	Mitral regurgitation as a phenotypic manifestation of nonphotosensitive trichothiodystrophy due to a splice variant in MPLKIP. BMC Medical Genetics, 2016, 17, 13.	2.1	5
192	Slc2a10 knock-out mice deficient in ascorbic acid synthesis recapitulate aspects of arterial tortuosity syndrome and display mitochondrial respiration defects. Human Molecular Genetics, 2020, 29, 1476-1488.	2.9	5
193	Clinical and subclinical findings in heterozygous <i>ABCC6</i> carriers: results from a Belgian cohort and clinical practice guidelines. Journal of Medical Genetics, 2022, 59, 496-504.	3.2	5
194	New insights into the molecular diagnosis and management of heritable thoracic aortic aneurysms and dissections. Polish Archives of Internal Medicine, 2013, 123, 693-700.	0.4	5
195	18q-Syndrome with coeliac disease. European Journal of Pediatrics, 1999, 158, 528-528.	2.7	4
196	DUP25 remains unconfirmed. American Journal of Medical Genetics Part A, 2004, 131A, 320-321.	2.4	4
197	Identification of von Willebrand disease type 1 in a patient with Ehlers–Danlos syndrome classic type. Haemophilia, 2016, 22, e309-11.	2.1	4
198	Decreased Nuclear Ascorbate Accumulation Accompanied with Altered Genomic Methylation Pattern in Fibroblasts from Arterial Tortuosity Syndrome Patients. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-11.	4.0	4

Paul J Coucke

#	Article	IF	CITATIONS
199	Digital Polymerase Chain Reaction for Assessment of Mutant Mitochondrial Carry-over after Nuclear Transfer for In Vitro Fertilization. Clinical Chemistry, 2021, 67, 968-976.	3.2	4
200	Genes in Thoracic Aortic Aneurysms and Dissections - Do they Matter?: Translation and Integration of Research and Modern Genetic Techniques into Daily Clinical Practice. Aorta, 2013, 1, 135-145.	0.5	3
201	Association between Kniest dysplasia and chondrosarcoma in a child. American Journal of Medical Genetics, Part A, 2015, 167, 3204-3208.	1.2	3
202	Genetics of the Ehlers–Danlos syndrome: more than collagen disorders. Expert Opinion on Orphan Drugs, 2015, 3, 379-392.	0.8	3
203	Congenital contractural arachnodactyly due to a novel splice site mutation in the FBN2 gene. Journal of Pediatric Genetics, 2015, 03, 163-166.	0.7	3
204	BATCH-GE: Analysis of NGS Data for Genome Editing Assessment. Methods in Molecular Biology, 2018, 1865, 83-90.	0.9	3
205	The ZE-Tunnel: An Affordable, Easy-to-Assemble, and User-Friendly Benchtop Zebrafish Swim Tunnel. Zebrafish, 2021, 18, 29-41.	1.1	3
206	Loss of zebrafish atp6v1e1b, encoding a subunit of vacuolar ATPase, recapitulates human ARCL type 2C syndrome and identifies multiple pathobiological signatures. PLoS Genetics, 2021, 17, e1009603.	3.5	3
207	Biallelic variants in MESD, which encodes a WNT-signaling-related protein, in four new families with recessively inherited osteogenesis imperfecta. Human Genetics and Genomics Advances, 2021, 2, 100051.	1.7	3
208	Nucleic acids enrichment of fungal pathogens to study host-pathogen interactions. Scientific Reports, 2019, 9, 18037.	3.3	2
209	New insights on the clinical variability of FKBP10 mutations. European Journal of Medical Genetics, 2020, 63, 103980.	1.3	2
210	Comprehensive validation of a diagnostic strategy for sequencing genes with one or multiple pseudogenes using pseudoxanthoma elasticum as a model. Journal of Genetics and Genomics, 2021, 48, 289-299.	3.9	2
211	A novel fibrillin-1 mutation in an egyptian marfan family: A proband showing nephrotic syndrome due to focal segmental glomerulosclerosis. Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia, 2017, 28, 141.	0.3	2
212	First report of the genetic background of Marfan syndrome in Polish patients. Polish Archives of Internal Medicine, 2013, 123, 646-647.	0.4	2
213	Vascular Ehlers–Danlos syndrome in 2 Polish patients: identification of 2 novel COL3A1 gene mutations. Kardiologia Polska, 2019, 77, 1070-1073.	0.6	2
214	Comprehensive in silico Study of GLUT10: Prediction of Possible Substrate Binding Sites and Interacting Molecules. Current Pharmaceutical Biotechnology, 2020, 21, 117-130.	1.6	2
215	Identification of a new connexin gene GJA11 (Cx59) using degenerate PCR primers. GeneScreen, 2000, 1, 35-40.	0.6	1
216	Frequency of the phenylalanine deletion (ΔF ₅₀₈) in the CF gene of Belgian cystic fibrosis patients. Clinical Genetics, 1991, 39, 89-92.	2.0	1

#	Article	IF	CITATIONS
217	Localization of a novel gene for nonsyndromic hearing loss (DFNB17) to chromosome region 7q31. American Journal of Medical Genetics Part A, 1998, 78, 107-113.	2.4	1
218	G Protein oupled Receptor Kinase 6 (GRK6) Regulation of Insulin Processing and Secretion. FASEB Journal, 2022, 36, .	0.5	1
219	Short stature, severe aortic root dilation, skin hyperextensibility, extreme joint laxity and craniofacial dysmorphic features: a probable new syndrome. Clinical Dysmorphology, 2010, 19, 119-122.	0.3	0
220	Illumina sequencing of 15 deafness genes using fragmented amplicons. BMC Research Notes, 2014, 7, 509.	1.4	0
221	G Protein oupled Receptor Kinase 6 (GRK6) Regulation of Insulin Processing and Secretion. FASEB Journal, 2021, 35, .	0.5	0
222	K+-Channel Gene KCNQ4. , 2003, , .		0
223	High myopia and vitreal veils in a patient with Poretti– Boltshauser syndrome due to a novel homozygous <i>LAMA1</i> mutation. Ophthalmic Genetics, 2022, , 1-5.	1.2	Ο