
Patrick Seale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1014315/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adipose-tissue plasticity in health and disease. Cell, 2022, 185, 419-446.	28.9	252
2	Transient expansion and myofibroblast conversion of adipogenic lineage precursors mediate bone marrow repair after radiation. JCI Insight, 2022, 7, .	5.0	7
3	Defining the lineage of thermogenic perivascular adipose tissue. Nature Metabolism, 2021, 3, 469-484.	11.9	63
4	Hepatic AKT orchestrates adipose tissue thermogenesis via FGF21-dependent and -independent mechanisms. Cell Reports, 2021, 35, 109128.	6.4	15
5	Neonatal IL-4 exposure decreases adipogenesis of male rats into adulthood. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E1148-E1157.	3.5	3
6	Marrow adipogenic lineage precursor: A new cellular component of marrow adipose tissue. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101518.	4.7	14
7	Thymic stromal lymphopoietin induces adipose loss through sebum hypersecretion. Science, 2021, 373, .	12.6	36
8	Dpp4+ interstitial progenitor cells contribute to basal and high fat diet-induced adipogenesis. Molecular Metabolism, 2021, 54, 101357.	6.5	25
9	ZFP423 controls EBF2 coactivator recruitment and PPARÎ ³ occupancy to determine the thermogenic plasticity of adipocytes. Genes and Development, 2021, 35, 1461-1474.	5.9	15
10	Prdm16 Deficiency Leads to Age-Dependent Cardiac Hypertrophy, Adverse Remodeling, Mitochondrial Dysfunction, and Heart Failure. Cell Reports, 2020, 33, 108288.	6.4	36
11	Skinny Fat Cells Stimulate Wound Healing. Cell Stem Cell, 2020, 26, 801-803.	11.1	9
12	Early B Cell Factor Activity Controls Developmental and Adaptive Thermogenic Gene Programming in Adipocytes. Cell Reports, 2020, 30, 2869-2878.e4.	6.4	36
13	Deficiency of bone morphogenetic protein-3b induces metabolic syndrome and increases adipogenesis. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E363-E375.	3.5	9
14	Shared PPARα/γ Target Genes Regulate Brown Adipocyte Thermogenic Function. Cell Reports, 2020, 30, 3079-3091.e5.	6.4	26
15	Single cell transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment. ELife, 2020, 9, .	6.0	191
16	PRDM16 Maintains Homeostasis of the Intestinal Epithelium by Controlling Region-Specific Metabolism. Cell Stem Cell, 2019, 25, 830-845.e8.	11.1	62
17	A PRDM16-Driven Metabolic Signal from Adipocytes Regulates Precursor Cell Fate. Cell Metabolism, 2019, 30, 174-189.e5.	16.2	141
18	Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science, 2019, 364, .	12.6	400

PATRICK SEALE

#	Article	IF	CITATIONS
19	Transcriptional Control of Brown and Beige Fat Development and Function. Obesity, 2019, 27, 13-21.	3.0	77
20	Stepping Up Human Beige Fat Cell Production. Cell Reports, 2018, 25, 2935-2936.	6.4	4
21	Interrogation of nonconserved human adipose lincRNAs identifies a regulatory role of <i>linc-ADAL</i> in adipocyte metabolism. Science Translational Medicine, 2018, 10, .	12.4	42
22	Regeneration of fat cells from myofibroblasts during wound healing. Science, 2017, 355, 748-752.	12.6	434
23	EBF2 transcriptionally regulates brown adipogenesis via the histone reader DPF3 and the BAF chromatin remodeling complex. Genes and Development, 2017, 31, 660-673.	5.9	64
24	PRDM16 represses the type I interferon response in adipocytes to promote mitochondrial and thermogenic programing. EMBO Journal, 2017, 36, 1528-1542.	7.8	63
25	Histone deacetylase 3 prepares brown adipose tissue for acute thermogenic challenge. Nature, 2017, 546, 544-548.	27.8	149
26	Enhancing brown fat with NFIA. Nature Cell Biology, 2017, 19, 1006-1007.	10.3	2
27	Neonatal GLP1R activation limits adult adiposity by durably altering hypothalamic architecture. Molecular Metabolism, 2017, 6, 748-759.	6.5	16
28	The tumor suppressor FLCN mediates an alternate mTOR pathway to regulate browning of adipose tissue. Genes and Development, 2016, 30, 2551-2564.	5.9	100
29	Zfp423 Maintains White Adipocyte Identity through Suppression of the Beige Cell Thermogenic Gene Program. Cell Metabolism, 2016, 23, 1167-1184.	16.2	187
30	Control of brown and beige fat development. Nature Reviews Molecular Cell Biology, 2016, 17, 691-702.	37.0	507
31	EBF2 promotes the recruitment of beige adipocytes in white adipose tissue. Molecular Metabolism, 2016, 5, 57-65.	6.5	83
32	Lack of AKT in adipocytes causes severe lipodystrophy. Molecular Metabolism, 2016, 5, 472-479.	6.5	56
33	SnapShot: Brown and Beige Adipose Thermogenesis. Cell, 2016, 166, 258-258.e1.	28.9	38
34	Rapamycin Blocks Induction of the Thermogenic Program in White Adipose Tissue. Diabetes, 2016, 65, 927-941.	0.6	67
35	Single ell transcriptomics and functional target validation of brown adipocytes show their complex roles in metabolic homeostasis. FASEB Journal, 2016, 30, 81-92.	0.5	39
36	Transcriptional Regulatory Circuits Controlling Brown Fat Development and Activation. Diabetes, 2015, 64, 2369-2375.	0.6	123

PATRICK SEALE

#	Article	IF	CITATIONS
37	Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation. Genome Biology, 2015, 16, 122.	9.6	95
38	PRDM16 binds MED1 and controls chromatin architecture to determine a brown fat transcriptional program. Genes and Development, 2015, 29, 298-307.	5.9	112
39	The Role of PDE3B Phosphorylation in the Inhibition of Lipolysis by Insulin. Molecular and Cellular Biology, 2015, 35, 2752-2760.	2.3	73
40	Functions of Prdm16 in thermogenic fat cells. Temperature, 2015, 2, 65-72.	3.0	35
41	Brown and Beige Fat: Physiological Roles beyond Heat Generation. Cell Metabolism, 2015, 22, 546-559.	16.2	763
42	Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature, 2015, 519, 242-246.	27.8	788
43	Thermogenic Activity of UCP1 in Human White Fat-Derived Beige Adipocytes. Molecular Endocrinology, 2015, 29, 130-139.	3.7	85
44	p107 Is a Crucial Regulator for Determining the Adipocyte Lineage Fate Choices of Stem Cells. Stem Cells, 2014, 32, 1323-1336.	3.2	28
45	Genetically altering organismal metabolism by leptin-deficiency benefits a mouse model of amyotrophic lateral sclerosis. Human Molecular Genetics, 2014, 23, 4995-5008.	2.9	32
46	Ablation of PRDM16 and Beige Adipose Causes Metabolic Dysfunction and a Subcutaneous to Visceral Fat Switch. Cell, 2014, 156, 304-316.	28.9	719
47	Prdm16 Is Required for the Maintenance of Brown Adipocyte Identity and Function in Adult Mice. Cell Metabolism, 2014, 19, 593-604.	16.2	307
48	Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14466-14471.	7.1	178
49	Brown and beige fat: development, function and therapeutic potential. Nature Medicine, 2013, 19, 1252-1263.	30.7	1,846
50	EBF2 Determines and Maintains Brown Adipocyte Identity. Cell Metabolism, 2013, 17, 562-574.	16.2	305
51	MicroRNA-133 Controls Brown Adipose Determination in Skeletal Muscle Satellite Cells by Targeting Prdm16. Cell Metabolism, 2013, 17, 210-224.	16.2	249
52	The nuclear receptor Rev-erbα controls circadian thermogenic plasticity. Nature, 2013, 503, 410-413.	27.8	228
53	Brown adipose tissue biology and therapeutic potential. Frontiers in Endocrinology, 2013, 4, 14.	3.5	7
54	An Evi1-C/EBPβ Complex Controls Peroxisome Proliferator-Activated Receptor γ2 Gene Expression To Initiate White Fat Cell Differentiation. Molecular and Cellular Biology, 2012, 32, 2289-2299.	2.3	19

PATRICK SEALE

#	Article	IF	CITATIONS
55	Tyk2 and Stat3 Regulate Brown Adipose Tissue Differentiation and Obesity. Cell Metabolism, 2012, 16, 814-824.	16.2	81
56	Orexin Turns Up the Heat on Obesity. Cell Metabolism, 2011, 14, 441-442.	16.2	7
57	Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. Journal of Clinical Investigation, 2011, 121, 96-105.	8.2	1,036
58	Transcriptional control of preadipocyte determination by Zfp423. Nature, 2010, 464, 619-623.	27.8	438
59	Beige Can Be Slimming. Science, 2010, 328, 1113-1114.	12.6	308
60	Transcriptional Control of Brown Fat Development. Cell Metabolism, 2010, 11, 257-262.	16.2	362
61	Transcriptional control of brown adipocyte development and physiological function—of mice and men. Genes and Development, 2009, 23, 788-797.	5.9	250
62	Brown Fat in Humans: Turning up the Heat on Obesity. Diabetes, 2009, 58, 1482-1484.	0.6	142
63	Initiation of myoblast to brown fat switch by a PRDM16–C/EBP-β transcriptional complex. Nature, 2009, 460, 1154-1158.	27.8	620
64	PRDM16 controls a brown fat/skeletal muscle switch. Nature, 2008, 454, 961-967.	27.8	1,997
65	Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes and Development, 2008, 22, 1397-1409.	5.9	393
66	Transcriptional Control of Brown Fat Determination by PRDM16. Cell Metabolism, 2007, 6, 38-54.	16.2	996
67	Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metabolism, 2006, 3, 333-341.	16.2	548