Wolfgang Schuh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10141160/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Maternal SARS-CoV-2 infection during pregnancy: possible impact on the infant. European Journal of Pediatrics, 2022, 181, 413-418.	2.7	14
2	A pair of noncompeting neutralizing human monoclonal antibodies protecting from disease in a SARS oVâ€2 infection model. European Journal of Immunology, 2022, 52, 770-783.	2.9	24
3	Single ell resolution of plasma cell fate programming in health and disease. European Journal of Immunology, 2022, 52, 10-23.	2.9	8
4	Krüppel-like factor 2 controls IgA plasma cell compartmentalization and IgA responses. Mucosal Immunology, 2022, 15, 668-682.	6.0	5
5	Mitochondrial respiration in B lymphocytes is essential for humoral immunity by controlling the flux of the TCA cycle. Cell Reports, 2022, 39, 110912.	6.4	20
6	TFG is required for autophagy flux and to prevent endoplasmic reticulum stress in CH12 B lymphoma cells. Autophagy, 2021, 17, 2238-2256.	9.1	10
7	A surrogate cellâ€based SARSâ€CoVâ€2 spike blocking assay. European Journal of Immunology, 2021, 51, 2665-2676.	2.9	3
8	Increased risk of chronic fatigue and hair loss following COVID-19 in individuals with hypohidrotic ectodermal dysplasia. Orphanet Journal of Rare Diseases, 2021, 16, 373.	2.7	2
9	miRâ€148a controls metabolic programming and survival of mature CD19â€negative plasma cells in mice. European Journal of Immunology, 2021, 51, 1089-1109.	2.9	11
10	Krüppel-like Factor 2 (KLF2) in Immune Cell Migration. Vaccines, 2021, 9, 1171.	4.4	16
11	Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). European Journal of Immunology, 2021, 51, 2708-3145.	2.9	198
12	Unraveling the mysteries of plasma cells. Advances in Immunology, 2020, 146, 57-107.	2.2	18
13	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
14	Eosinophils are not essential for maintenance of murine plasma cells in the bone marrow. European Journal of Immunology, 2018, 48, 822-828.	2.9	38
15	Regulation of Energy Metabolism during Early B Lymphocyte Development. International Journal of Molecular Sciences, 2018, 19, 2192.	4.1	25
16	A defined metabolic state in pre B cells governs B-cell development and is counterbalanced by Swiprosin-2/EFhd1. Cell Death and Differentiation, 2017, 24, 1239-1252.	11.2	52
17	A new staining protocol for detection of murine antibodyâ€secreting plasma cell subsets by flow cytometry. European Journal of Immunology, 2017, 47, 1389-1392.	2.9	112
18	Interleukinâ€36 receptor mediates the crosstalk between plasma cells and synovial fibroblasts. European Journal of Immunology, 2017, 47, 2101-2112.	2.9	26

WOLFGANG SCHUH

#	Article	IF	CITATIONS
19	Regulation of autoantibody activity by the IL-23–TH17 axis determines the onset of autoimmune disease. Nature Immunology, 2017, 18, 104-113.	14.5	274
20	Essential control of early B-cell development by Mef2 transcription factors. Blood, 2016, 127, 572-581.	1.4	65
21	Prolonged Ex vivo expansion and differentiation of naÃ⁻ve murine CD43 ^{â^'} B splenocytes. Biotechnology Progress, 2016, 32, 978-989.	2.6	4
22	Interplay between the prostaglandin transporter OATP2A1 and prostaglandin E2-mediated cellular effects. Cellular Signalling, 2015, 27, 663-672.	3.6	3
23	ICOS maintains the T follicular helper cell phenotype by down-regulating Krüppel-like factor 2. Journal of Experimental Medicine, 2015, 212, 217-233.	8.5	255
24	KLF2– A Negative Regulator of Pre-B Cell Clonal Expansion and B Cell Activation. PLoS ONE, 2014, 9, e97953.	2.5	26
25	Leukocyte β7 Integrin Targeted by Krüppel-like Factors. Journal of Immunology, 2014, 193, 1737-1746.	0.8	12
26	High Levels of SOX5 Decrease Proliferative Capacity of Human B Cells, but Permit Plasmablast Differentiation. PLoS ONE, 2014, 9, e100328.	2.5	30
27	B cell homeostasis and plasma cell homing controlled by Krüppel-like factor 2. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 710-715.	7.1	97
28	Transcriptome analysis in primary B lymphoid precursors following induction of the pre-B cell receptor. Molecular Immunology, 2008, 45, 362-375.	2.2	31
29	Cutting Edge: Signaling and Cell Surface Expression of a μH Chain in the Absence of λ5: A Paradigm Revisited. Journal of Immunology, 2003, 171, 3343-3347.	0.8	68