Georg Mohr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10139938/publications.pdf Version: 2024-02-01

GEORG MOHR

#	Article	IF	CITATIONS
1	A Reverse Transcriptase-Cas1 Fusion Protein Contains a Cas6 Domain Required for Both CRISPR RNA Biogenesis and RNA Spacer Acquisition. Molecular Cell, 2018, 72, 700-714.e8.	9.7	25
2	A Highly Proliferative Group IIC Intron from Geobacillus stearothermophilus Reveals New Features of Group II Intron Mobility and Splicing. Journal of Molecular Biology, 2018, 430, 2760-2783.	4.2	14
3	On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires. MBio, 2017, 8, .	4.1	52
4	Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase–Cas1 fusion protein. Science, 2016, 351, aad4234.	12.6	170
5	Recent mobility of plastid encoded group II introns and twintrons in five strains of the unicellular red alga <i>Porphyridium</i> . PeerJ, 2015, 3, e1017.	2.0	22
6	Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, RNA-seq, and non-coding RNA analysis. Mobile DNA, 2014, 5, 2.	3.6	66
7	The contribution of cellulosomal scaffoldins to cellulose hydrolysis by Clostridium thermocellum analyzed by using thermotargetrons. Biotechnology for Biofuels, 2014, 7, 80.	6.2	46
8	A Targetron System for Gene Targeting in Thermophiles and Its Application in Clostridium thermocellum. PLoS ONE, 2013, 8, e69032.	2.5	59
9	High-Throughput Genetic Identification of Functionally Important Regions of the Yeast DEAD-Box Protein Mss116p. Journal of Molecular Biology, 2011, 413, 952-972.	4.2	15
10	Mne1 Is a Novel Component of the Mitochondrial Splicing Apparatus Responsible for Processing of a COX1 Group I Intron in Yeast. Journal of Biological Chemistry, 2011, 286, 10137-10146.	3.4	17
11	Mechanisms Used for Genomic Proliferation by Thermophilic Group II Introns. PLoS Biology, 2010, 8, e1000391.	5.6	45
12	Function of the C-terminal Domain of the DEAD-box Protein Mss116p Analyzed in Vivo and in Vitro. Journal of Molecular Biology, 2008, 375, 1344-1364.	4.2	74
13	Domain structure and three-dimensional model of a group II intron-encoded reverse transcriptase. Rna, 2005, 11, 14-28.	3.5	85
14	Group II Intron Homing Endonucleases: Ribonucleoprotein Complexes with Programmable Target Specificity. , 2005, , 121-145.		13
15	The Neurospora crassa CYT-18 protein C-terminal RNA-binding domain helps stabilize interdomain tertiary interactions in group I introns. Rna, 2004, 10, 634-644.	3.5	17
16	Putative proteins related to group II intron reverse transcriptase/maturases are encoded by nuclear genes in higher plants. Nucleic Acids Research, 2003, 31, 647-652.	14.5	95
17	Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns. Journal of Molecular Biology, 2001, 307, 75-92.	4.2	39
18	Rules for DNA target-site recognition by a lactococcal group II intron enable retargeting of the intron to specific DNA sequences. Genes and Development, 2000, 14, 559-573.	5.9	115

GEORG MOHR

#	Article	IF	CITATIONS
19	Group II intron mobility in yeast mitochondria: target DNA-primed reverse transcription activity of ai1 and reverse splicing into DNA transposition sites in vitro 1 1Edited by M. Yaniv. Journal of Molecular Biology, 1998, 282, 505-523.	4.2	66
20	A Tyrosyl-tRNA Synthetase Protein Induces Tertiary Folding of the Group I Intron Catalytic Core. Journal of Molecular Biology, 1996, 257, 512-531.	4.2	104
21	A Tyrosyl-tRNA Synthetase Suppresses Structural Defects in the Two Major Helical Domains of the Group I Intron Catalytic Core. Journal of Molecular Biology, 1996, 262, 87-104.	4.2	31
22	A tyrosyl-tRNA synthetase can function similarly to an RNA structure in the Tetrahymena ribozyme. Nature, 1994, 370, 147-150.	27.8	122
23	Evolutionary relationships among group II intron-encoded proteins and identification of a conserved domain that may be related to maturase function. Nucleic Acids Research, 1993, 21, 4991-4997.	14.5	208
24	Group I and group II introns FASEB Journal, 1993, 7, 15-24.	0.5	268
25	The neurospora CYT-18 protein suppresses defects in the phage T4 td intron by stabilizing the catalytically active structure of the intron core. Cell, 1992, 69, 483-494.	28.9	108
26	Integration of a group I intron into a ribosomal RNA sequence promoted by a tyrosyl-tRNA synthetase. Nature, 1991, 354, 164-167.	27.8	36
27	Strain improvement of filamentous fungi, by gene technology, facts and perspectives. Food Biotechnology, 1990, 4, 495-495.	1.5	3
28	Improved transformation frequency and heterologous promoter recognition in Aspergillus niger. Applied Microbiology and Biotechnology, 1990, 34, 63-70.	3.6	6
29	Rapid detection of bacterial hygromycin B phosphotransferase in Aspergillus niger transformants. Applied Microbiology and Biotechnology, 1989, 30, 371-374.	3.6	8
30	Analysis of Aspergillus niger transformants for single site integration and vector recombination. Applied Microbiology and Biotechnology, 1989, 32, 160-166.	3.6	10
31	The 5?-sequence of the isopenicillin N-synthetase gene (pcbC) from Cephalosporium acremonium directs the expression of the prokaryotic hygromycin B phosphotransferase gene (hph) in Aspergillus niger. Applied Microbiology and Biotechnology, 1989, 31, 358	3.6	37