Estela Jacinto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1013816/publications.pdf

Version: 2024-02-01

28 papers

6,660 citations

471509 17 h-index 24 g-index

29 all docs 29 docs citations

29 times ranked 9420 citing authors

#	Article	IF	CITATIONS
1	Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nature Cell Biology, 2004, 6, 1122-1128.	10.3	1,873
2	Two TOR Complexes, Only One of which Is Rapamycin Sensitive, Have Distinct Roles in Cell Growth Control. Molecular Cell, 2002, 10, 457-468.	9.7	1,685
3	SIN1/MIP1 Maintains rictor-mTOR Complex Integrity and Regulates Akt Phosphorylation and Substrate Specificity. Cell, 2006, 127, 125-137.	28.9	1,231
4	The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO Journal, 2008, 27, 1932-1943.	7.8	482
5	mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO Journal, 2010, 29, 3939-3951.	7.8	290
6	Regulation and metabolic functions of mTORC1 and mTORC2. Physiological Reviews, 2021, 101, 1371-1426.	28.8	250
7	TOR regulation of AGC kinases in yeast and mammals. Biochemical Journal, 2008, 410, 19-37.	3.7	188
8	Targeting mTOR and Metabolism in Cancer: Lessons and Innovations. Cells, 2019, 8, 1584.	4.1	149
9	mTORC2 Responds to Glutamine Catabolite Levels to Modulate the Hexosamine Biosynthesis Enzyme GFAT1. Molecular Cell, 2016, 63, 811-826.	9.7	97
10	mTOR Complex 2 Regulates Proper Turnover of Insulin Receptor Substrate-1 via the Ubiquitin Ligase Subunit Fbw8. Molecular Cell, 2012, 48, 875-887.	9.7	91
11	Mammalian TOR signaling to the AGC kinases. Critical Reviews in Biochemistry and Molecular Biology, 2011, 46, 527-547.	5. 2	68
12	Protein kinase Cζ exhibits constitutive phosphorylation and phosphatidylinositol-3,4,5-triphosphate-independent regulation. Biochemical Journal, 2016, 473, 509-523.	3.7	42
13	What controls TOR?. IUBMB Life, 2008, 60, 483-496.	3.4	36
14	mTORC2 modulates the amplitude and duration of GFAT1 Ser-243 phosphorylation to maintain flux through the hexosamine pathway during starvation. Journal of Biological Chemistry, 2018, 293, 16464-16478.	3.4	30
15	Dual-mTOR Inhibitor Rapalink-1 Reduces Prostate Cancer Patient-Derived Xenograft Growth and Alters Tumor Heterogeneity. Frontiers in Oncology, 2020, 10, 1012.	2.8	24
16	Mammalian Target of Rapamycin Complex 2 Modulates $\hat{l}\pm\hat{l}^2TCR$ Processing and Surface Expression during Thymocyte Development. Journal of Immunology, 2014, 193, 1162-1170.	0.8	22
17	KPT-9274, an Inhibitor of PAK4 and NAMPT, Leads to Downregulation of mTORC2 in Triple Negative Breast Cancer Cells. Chemical Research in Toxicology, 2020, 33, 482-491.	3.3	21
18	Akt activation improves microregional oxygen supply/consumption balance after cerebral ischemia-reperfusion. Brain Research, 2018, 1683, 48-54.	2.2	17

#	Article	IF	CITATIONS
19	MTOR Signaling and Metabolism in Early T Cell Development. Genes, 2021, 12, 728.	2.4	16
20	Amplifying mTORC2 signals through AMPK during energetic stress. Science Signaling, 2019, 12, .	3.6	9
21	Rapalink-1 Increased Infarct Size in Early Cerebral Ischemia–Reperfusion With Increased Blood–Brain Barrier Disruption. Frontiers in Physiology, 2021, 12, 706528.	2.8	8
22	Inhibition of serum and glucocorticoid regulated kinases by GSK650394 reduced infarct size in early cerebral ischemia-reperfusion with decreased BBB disruption. Neuroscience Letters, 2021, 762, 136143.	2.1	8
23	Phosphatase Targets in TOR Signaling. , 2007, 365, 323-334.		7
24	Lysophosphatidic acid increased infarct size in the early stage of cerebral ischemia-reperfusion with increased BBB permeability. Journal of Stroke and Cerebrovascular Diseases, 2020, 29, 105029.	1.6	6
25	mTORC2 Is Involved in the Induction of RSK Phosphorylation by Serum or Nutrient Starvation. Cells, 2020, 9, 1567.	4.1	6
26	The Target of Rapamycin: Structure and Functions. , 2012, , .		4
27	TFEBulous control of traffic by mTOR. EMBO Journal, 2011, 30, 3215-3216.	7.8	0
28	The young and the restless: Isolating the dynamic mammalian preribosomes. Journal of Biological Chemistry, 2019, 294, 10758-10759.	3.4	O