Peter Radermacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10137053/publications.pdf

Version: 2024-02-01

57758 46799 8,759 157 44 89 citations h-index g-index papers 158 158 158 6684 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High versus Low Blood-Pressure Target in Patients with Septic Shock. New England Journal of Medicine, 2014, 370, 1583-1593.	27.0	911
2	Effect of SOD-1 over-expression on myocardial function during resuscitated murine septic shock. Intensive Care Medicine, 2009, 35, 344-349.	8.2	600
3	Cardiac and metabolic effects of hypothermia and inhaled hydrogen sulfide in anesthetized and ventilated mice*. Critical Care Medicine, 2010, 38, 588-595.	0.9	597
4	Erythropoietin during porcine aortic balloon occlusion-induced ischemia/reperfusion injury. Critical Care Medicine, 2008, 36, 2143-2150.	0.9	587
5	The effect of iNOS deletion on hepatic gluconeogenesis in hyperdynamic murine septic shock. Intensive Care Medicine, 2007, 33, 1094-1101.	8.2	570
6	Glucose metabolism and catecholamines. Critical Care Medicine, 2007, 35, S508-S518.	0.9	259
7	Hyperoxia and hypertonic saline in patients with septic shock (HYPERS2S): a two-by-two factorial, multicentre, randomised, clinical trial. Lancet Respiratory Medicine, the, 2017, 5, 180-190.	10.7	207
8	Complement C3 vs C5 inhibition in severe COVID-19: Early clinical findings reveal differential biological efficacy. Clinical Immunology, 2020, 220, 108598.	3.2	191
9	Low-dose terlipressin during long-term hyperdynamic porcine endotoxemia: Effects on hepatosplanchnic perfusion, oxygen exchange, and metabolism*. Critical Care Medicine, 2005, 33, 373-380.	0.9	168
10	Opportunities for the repurposing of PARP inhibitors for the therapy of nonâ€oncological diseases. British Journal of Pharmacology, 2018, 175, 192-222.	5.4	160
11	Hyperoxia in intensive care, emergency, and peri-operative medicine: Dr. Jekyll or Mr. Hyde? A 2015 update. Annals of Intensive Care, 2015, 5, 42.	4.6	145
12	Effects of a Dobutamine-induced Increase in Splanchnic Blood Flow on Hepatic Metabolic Activity in Patients with Septic ShockÂ. Anesthesiology, 1997, 86, 818-824.	2.5	134
13	Optimizing mean arterial pressure in septic shock: a critical reappraisal of the literature. Critical Care, 2015, 19, 101.	5.8	129
14	Impact of exogenous beta-adrenergic receptor stimulation on hepatosplanchnic oxygen kinetics and metabolic activity in septic shock. Critical Care Medicine, 1999, 27, 325-331.	0.9	123
15	Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part <scp>II</scp> . Pathophysiological and therapeutic aspects. British Journal of Pharmacology, 2014, 171, 2123-2146.	5.4	121
16	Dangers of hyperoxia. Critical Care, 2021, 25, 440.	5.8	110
17	Effects of tempol, a free radical scavenger, on long-term hyperdynamic porcine bacteremia*. Critical Care Medicine, 2005, 33, 1057-1063.	0.9	102
18	Effect of increased cardiac output on hepatic and intestinal microcirculatory blood flow, oxygenation, and metabolism in hyperdynamic murine septic shock. Critical Care Medicine, 2005, 33, 2332-2338.	0.9	96

#	Article	IF	CITATIONS
19	HEMODYNAMIC AND METABOLIC EFFECTS OF HYDROGEN SULFIDE DURING PORCINE ISCHEMIA/REPERFUSION INJURY. Shock, 2008, 30, 359-364.	2.1	95
20	Effects of ventilation with 100% oxygen during early hyperdynamic porcine fecal peritonitis*. Critical Care Medicine, 2008, 36, 495-503.	0.9	94
21	Pooled analysis of higher versus lower blood pressure targets for vasopressor therapy septic and vasodilatory shock. Intensive Care Medicine, 2018, 44, 12-21.	8.2	93
22	Hemorrhagic shock drives glycocalyx, barrier and organ dysfunction early after polytrauma. Journal of Critical Care, 2018, 44, 229-237.	2.2	89
23	Role of inducible nitric oxide synthase in the reduced responsiveness of the myocardium to catecholamines in a hyperdynamic, murine model of septic shock*. Critical Care Medicine, 2006, 34, 307-313.	0.9	82
24	Effects of hydrogen sulfide on hemodynamics, inflammatory response and oxidative stress during resuscitated hemorrhagic shock in rats. Critical Care, 2010, 14, R165.	5.8	75
25	Genotoxicity of hyperbaric oxygen. Mutation Research - Reviews in Mutation Research, 2002, 512, 111-119.	5 . 5	74
26	Immunopathophysiology of trauma-related acute kidney injury. Nature Reviews Nephrology, 2021, 17, 91-111.	9.6	68
27	SELECTIVE INDUCIBLE NITRIC OXIDE SYNTHASE INHIBITION DURING LONG-TERM HYPERDYNAMIC PORCINE BACTEREMIA. Shock, 2004, 21, 458-465.	2.1	67
28	Metabolic alterations in sepsis and vasoactive drug???related metabolic effects. Current Opinion in Critical Care, 2003, 9, 271-278.	3.2	66
29	Inducible nitric oxide synthase inhibition improves intestinal microcirculatory oxygenation and CO2 balance during endotoxemia in pigs. Intensive Care Medicine, 2005, 31, 985-992.	8.2	66
30	Understanding the benefits and harms of oxygen therapy. Intensive Care Medicine, 2015, 41, 1118-1121.	8.2	64
31	Influence of an Orally Effective SOD on Hyperbaric Oxygen-related Cell Damage. Free Radical Research, 2004, 38, 927-932.	3.3	61
32	Hyperoxia may be beneficial. Critical Care Medicine, 2010, 38, S559-S568.	0.9	61
33	Vasopressin and its analogues in shock states: a review. Annals of Intensive Care, 2020, 10, 9.	4.6	60
34	Non-Hemodynamic Effects of Catecholamines. Shock, 2017, 48, 390-400.	2.1	58
35	Complement C5a Functions as a Master Switch for the pH Balance in Neutrophils Exerting Fundamental Immunometabolic Effects. Journal of Immunology, 2017, 198, 4846-4854.	0.8	58
36	H2S during circulatory shock: Some unresolved questions. Nitric Oxide - Biology and Chemistry, 2014, 41, 48-61.	2.7	56

3

#	Article	IF	CITATIONS
37	Effects of Intravenous Sulfide During Porcine Aortic Occlusion-Induced Kidney Ischemia/Reperfusion Injury. Shock, 2011, 35, 156-163.	2.1	54
38	Clinical review: influence of vasoactive and other therapies on intestinal and hepatic circulations in patients with septic shock. Critical Care, 2003, 8, 170.	5.8	51
39	Total haemoglobin mass and spleen contraction: a study on competitive apnea divers, non-diving athletes and untrained control subjects. European Journal of Applied Physiology, 2007, 101, 753-759.	2.5	51
40	Preclinical septic shock research: why we need an animal ICU. Annals of Intensive Care, 2019, 9, 66.	4.6	51
41	Norepinephrine and Ni‰-Monomethyl-l-arginine in Porcine Septic Shock. American Journal of Respiratory and Critical Care Medicine, 1999, 159, 1758-1765.	5.6	50
42	Erythropoietin attenuates cardiac dysfunction in experimental sepsis in mice via activation of the \hat{l}^2 -common receptor. DMM Disease Models and Mechanisms, 2013, 6, 1021-30.	2.4	49
43	Comparison of cardiac, hepatic, and renal effects of arginine vasopressin and noradrenaline during porcine fecal peritonitis: a randomized controlled trial. Critical Care, 2009, 13, R113.	5.8	47
44	A new role for an old drug: Ambroxol triggers lysosomal exocytosis via pH-dependent Ca2+ release from acidic Ca2+ stores. Cell Calcium, 2015, 58, 628-637.	2.4	46
45	Inflammatory Effects of Hypothermia and Inhaled H2S During Resuscitated, Hyperdynamic Murine Septic Shock. Shock, 2011, 35, 396-402.	2.1	45
46	Effects of intravenous sulfide during resuscitated porcine hemorrhagic shock*. Critical Care Medicine, 2012, 40, 2157-2167.	0.9	44
47	Hemodynamic, metabolic, and organ function effects of pure oxygen ventilation during established fecal peritonitis-induced septic shock. Critical Care Medicine, 2009, 37, 2465-2469.	0.9	41
48	Adrenomedullin binding improves catecholamine responsiveness and kidney function in resuscitated murine septic shock. Intensive Care Medicine Experimental, 2013, 1, 21.	1.9	40
49	Physiological and Clinical Aspects of Apnea Diving. Clinics in Chest Medicine, 2005, 26, 381-394.	2.1	38
50	THE PARP-1 INHIBITOR INO-1001 FACILITATES HEMODYNAMIC STABILIZATION WITHOUT AFFECTING DNA REPAIR IN PORCINE THORACIC AORTIC CROSS-CLAMPING-INDUCED ISCHEMIA/REPERFUSION. Shock, 2006, 25, 633-640.	2.1	38
51	Designing phase 3 sepsis trials: application of learned experiences from critical care trials in acute heart failure. Journal of Intensive Care, 2016, 4, 24.	2.9	38
52	Metabolic Effects of Norepinephrine and Dobutamine in Healthy Volunteers. Shock, 2002, 18, 495-500.	2.1	37
53	The molecular fingerprint of lung inflammation after blunt chest trauma. European Journal of Medical Research, 2015, 20, 70.	2.2	37
54	Comparison of carbamylated erythropoietin-FC fusion protein and recombinant human erythropoietin during porcine aortic balloon occlusion-induced spinal cord ischemia/reperfusion injury. Intensive Care Medicine, 2011, 37, 1525-33.	8.2	36

#	Article	lF	CITATIONS
55	Effects of Hyperoxia and Mild Therapeutic Hypothermia During Resuscitation From Porcine Hemorrhagic Shock*. Critical Care Medicine, 2016, 44, e264-e277.	0.9	36
56	Thirty-eight-negative kinase 1 mediates trauma-induced intestinal injury and multi-organ failure. Journal of Clinical Investigation, 2018, 128, 5056-5072.	8.2	36
57	Part III: Minimum Quality Threshold in Preclinical Sepsis Studies (MQTiPSS) for Fluid Resuscitation and Antimicrobial Therapy Endpoints. Shock, 2019, 51, 33-43.	2.1	35
58	Carbamylated erythropoietin-FC fusion protein and recombinant human erythropoietin during porcine kidney ischemia/reperfusion injury. Intensive Care Medicine, 2013, 39, 497-510.	8.2	34
59	Hyperoxia toxicity in septic shock patients according to the Sepsis-3 criteria: a post hoc analysis of the HYPER2S trial. Annals of Intensive Care, 2018, 8, 90.	4.6	34
60	A mouse is not a rat is not a man: species-specific metabolic responses to sepsis - a nail in the coffin of murine models for critical care research?. Intensive Care Medicine Experimental, 2013, 1, 26.	1.9	32
61	Effects of aÂcantaloupe melon extract/wheat gliadin biopolymer during aortic cross-clamping. Intensive Care Medicine, 2007, 33, 694-702.	8.2	31
62	Hemodynamic support in the early phase of septic shock: a review of challenges and unanswered questions. Annals of Intensive Care, 2018, 8, 102.	4.6	31
63	Effects of sodium thiosulfate (Na2S2O3) during resuscitation from hemorrhagic shock in swine with preexisting atherosclerosis. Pharmacological Research, 2020, 151, 104536.	7.1	29
64	Cardiovascular disease and resuscitated septic shock lead to the downregulation of the H2S-producing enzyme cystathionine- \hat{l}^3 -lyase in the porcine coronary artery. Intensive Care Medicine Experimental, 2017, 5, 17.	1.9	28
65	EFFECTS OF SELECTIVE INOS INHIBITION ON GUT AND LIVER O2-EXCHANGE AND ENERGY METABOLISM DURING HYPERDYNAMIC PORCINE ENDOTOXEMIA. Shock, 2001, 16, 203-210.	2.1	26
66	Cardiopulmonary, Histologic, and Inflammatory Effects of Intravenous Na2S After Blunt Chest Trauma-Induced Lung Contusion in Mice. Journal of Trauma, 2011, 71, 1659-1667.	2.3	26
67	Temperature and Cell-Type Dependency of Sulfide Effects on Mitochondrial Respiration. Shock, 2012, 38, 367-374.	2.1	26
68	Adenosine triphosphate–magnesium chloride: relevance for intensive care. Intensive Care Medicine, 2003, 29, 10-18.	8.2	25
69	The selective poly(ADP)ribose-polymerase 1 inhibitor INO1001 reduces spinal cord injury during porcine aortic cross-clamping-induced ischemia/reperfusion injury. Intensive Care Medicine, 2007, 33, 845-850.	8.2	25
70	Blunt Chest Trauma in Mice after Cigarette Smoke-Exposure: Effects of Mechanical Ventilation with 100 % O2. PLoS ONE, 2015, 10, e0132810.	2.5	25
71	Gaseous Mediators and Mitochondrial Function: The Future of Pharmacologically Induced Suspended Animation?. Frontiers in Physiology, 2017, 8, 691.	2.8	25
72	Interaction of hyperbaric oxygen, nitric oxide, and heme oxygenase on DNA strand breaks in vivo. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 572, 167-172.	1.0	24

#	Article	IF	CITATIONS
73	Association of Kidney Tissue Barrier Disrupture and Renal Dysfunction in Resuscitated Murine Septic Shock. Shock, 2016, 46, 398-404.	2.1	24
74	Effects of Hyperoxia During Resuscitation From Hemorrhagic Shock in Swine With Preexisting Coronary Artery Disease. Critical Care Medicine, 2017, 45, e1270-e1279.	0.9	23
75	Bladder tissue oxygen tension monitoring in pigs subjected to a range of cardiorespiratory and pharmacological challenges. Intensive Care Medicine, 2012, 38, 1868-1876.	8.2	22
76	The Mitochondria-Targeted H2S-Donor AP39 in a Murine Model of Combined Hemorrhagic Shock and Blunt Chest Trauma. Shock, 2019, 52, 230-239.	2.1	22
77	Impaired Glucocorticoid Receptor Dimerization Aggravates LPS-Induced Circulatory and Pulmonary Dysfunction. Frontiers in Immunology, 2020, 10, 3152.	4.8	22
78	Applying gases for microcirculatory and cellular oxygenation in sepsis: effects of nitric oxide, carbon monoxide, and hydrogen sulfide. Current Opinion in Anaesthesiology, 2009, 22, 168-176.	2.0	21
79	Effects of Pretreatment Hypothermia During Resuscitated Porcine Hemorrhagic Shock. Critical Care Medicine, 2013, 41, e105-e117.	0.9	21
80	MAP of 65: target of the past?. Intensive Care Medicine, 2018, 44, 1551-1552.	8.2	21
81	Inhaled Hydrogen Sulfide Induces Suspended Animation, But Does Not Alter the Inflammatory Response After Blunt Chest Trauma. Shock, 2012, 37, 197-204.	2.1	20
82	Is pharmacological, H2S-induced 'suspended animation' feasible in the ICU?. Critical Care, 2014, 18, 215.	5.8	20
83	Lactate in shock: aÂhigh-octane fuel for the heart?. Intensive Care Medicine, 2007, 33, 406-408.	8.2	19
84	Inotropes and vasopressors: more than haemodynamics!. British Journal of Pharmacology, 2012, 165, 2009-2011.	5.4	19
85	The obesity paradox and acute kidney injury: beneficial effects of hyper-inflammation?. Critical Care, 2013, 17, 1023.	5.8	19
86	Effects of the PPAR- \hat{l}^2/\hat{l}^2 agonist GW0742 during resuscitated porcine septic shock. Intensive Care Medicine Experimental, 2013, 1, 28.	1.9	19
87	Selepressin in Septic Shock. Critical Care Medicine, 2016, 44, 234-236.	0.9	19
88	Left ventricular function during porcine-resuscitated septic shock with pre-existing atherosclerosis. Intensive Care Medicine Experimental, 2016, 4, 14.	1.9	19
89	A CRHR1 antagonist prevents synaptic loss and memory deficits in a trauma-induced delirium-like syndrome. Molecular Psychiatry, 2021, 26, 3778-3794.	7.9	19
90	Measuring end products of nitric oxide in vivo. Methods in Enzymology, 2002, 359, 75-83.	1.0	18

#	Article	IF	Citations
91	Hyperchloremia is not associated with AKI or death in septic shock patients: results of a post hoc analysis of the "HYPER2S―trial. Annals of Intensive Care, 2019, 9, 95.	4.6	18
92	In-Depth Characterization of the Effects of Cigarette Smoke Exposure on the Acute Trauma Response and Hemorrhage in Mice. Shock, 2019, 51, 68-77.	2.1	18
93	The Effects of Genetic 3-Mercaptopyruvate Sulfurtransferase Deficiency in Murine Traumatic-Hemorrhagic Shock. Shock, 2019, 51, 472-478.	2.1	18
94	Glucocorticoids coordinate macrophage metabolism through the regulation of the tricarboxylic acid cycle. Molecular Metabolism, 2022, 57, 101424.	6.5	18
95	Early Detection of Junctional Adhesion Molecule-1 (JAM-1) in the Circulation after Experimental and Clinical Polytrauma. Mediators of Inflammation, 2015, 2015, 1-7.	3.0	17
96	Metabolic, Cardiac, and Renal Effects of the Slow Hydrogen Sulfide-Releasing Molecule GYY4137 During Resuscitated Septic Shock in Swine with Pre-Existing Coronary Artery Disease. Shock, 2017, 48, 175-184.	2.1	17
97	Severe Traumatic Brain Injury (TBI) Modulates the Kinetic Profile of the Inflammatory Response of Markers for Neuronal Damage. Journal of Clinical Medicine, 2020, 9, 1667.	2.4	16
98	EFFECTS OF INTRARENAL ADMINISTRATION OF THE COX-2 INHIBITOR PARECOXIB DURING PORCINE SUPRARENAL AORTIC CROSS-CLAMPING. Shock, 2005, 24, 476-481.	2.1	15
99	THE EFFECT OF SUPEROXIDE DISMUTASE OVEREXPRESSION ON HEPATIC GLUCONEOGENESIS AND WHOLE-BODY GLUCOSE OXIDATION DURING RESUSCITATED NORMOTENSIVE MURINE SEPTIC SHOCK. Shock, 2008, 30, 578-584.	2.1	15
100	Cystathionine- \hat{l}^3 -lyase expression is associated with mitochondrial respiration during sepsis-induced acute kidney injury in swine with atherosclerosis. Intensive Care Medicine Experimental, 2018, 6, 43.	1.9	15
101	Metabolic effects of vasoactive agents. Current Opinion in Anaesthesiology, 2001, 14, 157-163.	2.0	14
102	The Role of Cystathionine-Î ³ -Lyase In Blunt Chest Trauma in Cigarette Smoke Exposed Mice. Shock, 2017, 47, 491-499.	2.1	14
103	The Neuroprotective Effect of Ethanol Intoxication in Traumatic Brain Injury Is Associated with the Suppression of ErbB Signaling in Parvalbumin-Positive Interneurons. Journal of Neurotrauma, 2018, 35, 2718-2735.	3.4	14
104	Animal-Free Human Whole Blood Sepsis Model to Study Changes in Innate Immunity. Frontiers in Immunology, 2020, 11, 571992.	4.8	14
105	Target arterial PO2 according to the underlying pathology: a mini-review of the available data in mechanically ventilated patients. Annals of Intensive Care, 2021, 11, 88.	4.6	14
106	Pathophysiology of tissue acidosis in septic shock: Blocked microcirculation or impaired cellular respiration?*. Critical Care Medicine, 2008, 36, 640-642.	0.9	13
107	INHIBITION OF NITRIC OXIDE SYNTHASE DURING SEPSIS. Shock, 2010, 34, 321-322.	2.1	13
108	Hyperoxia Alters Ultrastructure and Induces Apoptosis in Leukemia Cell Lines. Biomolecules, 2020, 10, 282.	4.0	13

#	Article	IF	Citations
109	Catecholamines and Vasopressin During Critical Illness. Endocrinology and Metabolism Clinics of North America, 2006, 35, 839-857.	3.2	12
110	Erythropoietin in the critically ill: do we ask the right questions?. Critical Care, 2012, 16, 319.	5.8	12
111	Landiolol in patients with septic shock resident in an intensive care unit (LANDI-SEP): study protocol for a randomized controlled trial. Trials, 2018, 19, 637.	1.6	12
112	Small Extracellular Vesicles Propagate the Inflammatory Response After Trauma. Advanced Science, 2021, 8, e2102381.	11.2	12
113	PKD regulates actin polymerization, neutrophil deformability, and transendothelial migration in response to fMLP and trauma. Journal of Leukocyte Biology, 2018, 104, 615-630.	3.3	11
114	Thirty-Eight-Negative Kinase 1 Is a Mediator of Acute Kidney Injury in Experimental and Clinical Traumatic Hemorrhagic Shock. Frontiers in Immunology, 2020, 11, 2081.	4.8	11
115	Effects of 15-deoxy-î"12,14-prostaglandin-J2 during hyperdynamic porcine endotoxemia. Intensive Care Medicine, 2006, 32, 759-765.	8.2	10
116	Year in review in Intensive Care Medicine, 2006. I. Experimental studies. Clinical studies: brain injury, renal failure and endocrinology. Intensive Care Medicine, 2007, 33, 49-57.	8.2	10
117	Hyperoxia or Therapeutic Hypothermia During Resuscitation from Non-Lethal Hemorrhagic Shock in Swine. Shock, 2017, 48, 564-570.	2.1	10
118	Impact of hyperglycemia on cystathionine- \hat{l}^3 -lyase expression during resuscitated murine septic shock. Intensive Care Medicine Experimental, 2017, 5, 30.	1.9	10
119	H2S as a Therapeutic Adjuvant Against COVID-19: Why and How?. Shock, 2021, 56, 865-867.	2.1	10
120	H2S and Oxytocin Systems in Early Life Stress and Cardiovascular Disease. Journal of Clinical Medicine, 2021, 10, 3484.	2.4	10
121	H2S in acute lung injury: a therapeutic dead end(?). Intensive Care Medicine Experimental, 2020, 8, 33.	1.9	10
122	The Interaction of the Endogenous Hydrogen Sulfide and Oxytocin Systems in Fluid Regulation and the Cardiovascular System. Antioxidants, 2020, 9, 748.	5.1	9
123	Systemic calcitonin gene-related peptide receptor antagonism decreases survival in a porcine model of polymicrobial sepsis: blinded randomised controlled trial. British Journal of Anaesthesia, 2022, 128, 864-873.	3.4	9
124	H2S in Critical Illness—A New Horizon for Sodium Thiosulfate?. Biomolecules, 2022, 12, 543.	4.0	9
125	The world according to poly(ADP-ribose) polymerase (PARP)—update 2006. Intensive Care Medicine, 2006, 32, 1470-1474.	8.2	8
126	Mediation Analysis of High Blood Pressure Targets, Arrhythmias, and Shock Mortality. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 802-805.	5.6	8

#	Article	IF	CITATIONS
127	Online monitoring of carbon dioxide and oxygen in exhaled mouse breath via substrate-integrated hollow waveguide Fourier-transform infrared-luminescence spectroscopy. Journal of Breath Research, 2018, 12, 036018.	3.0	7
128	Microcirculation vs. Mitochondriaâ€"What to Target?. Frontiers in Medicine, 2020, 7, 416.	2.6	7
129	Evaluation of the gut microbiome in association with biological signatures of inflammation in murine polytrauma and shock. Scientific Reports, 2021, 11, 6665.	3.3	7
130	Effects of Sodium Thiosulfate During Resuscitation from Trauma-and-Hemorrhage in Cystathionine \hat{I}^3 -Lyase (CSE) Knockout Mice. Shock, 2021, Publish Ahead of Print, .	2.1	7
131	Effects of Acute Subdural Hematoma-Induced Brain Injury On Energy Metabolism in Peripheral Blood Mononuclear Cells. Shock, 2021, 55, 407-417.	2.1	7
132	Cardiac Effects of Hyperoxia During Resuscitation From Hemorrhagic Shock in Swine. Shock, 2019, 52, e52-e59.	2.1	6
133	Temporal–spatial organ response after blastâ€induced experimental blunt abdominal trauma. FASEB Journal, 2021, 35, e22038.	0.5	6
134	Before the ICU: does emergency room hyperoxia affect outcome?. Critical Care, 2018, 22, 59.	5.8	5
135	Intravenous hydrogen sulfide does not induce neuroprotection after aortic balloon occlusion-induced spinal cord ischemia/reperfusion injury in a human-like porcine model of ubiquitous arteriosclerosis. Intensive Care Medicine Experimental, 2018, 6, 44.	1.9	5
136	Metabolic monitoring via on-line analysis of $\sup 13 \le 0$ -enriched carbon dioxide in exhaled mouse breath using substrate-integrated hollow waveguide infrared spectroscopy and luminescence sensing combined with Bayesian sampling. Journal of Breath Research, 2021, 15, 026013.	3.0	5
137	Localization of the hydrogen sulfide and oxytocin systems at the depth of the sulci in a porcine model of acute subdural hematoma. Neural Regeneration Research, 2021, 16, 2376.	3.0	5
138	EFFECTS OF INTRARENAL ADMINISTRATION OF THE CALCIUM ANTAGONIST NIMODIPINE DURING PORCINE AORTIC OCCLUSION-INDUCED ISCHEMIA/REPERFUSION INJURY. Shock, 2008, 29, 717-723.	2.1	5
139	The H2S Donor Sodium Thiosulfate (Na2S2O3) Does Not Improve Inflammation and Organ Damage After Hemorrhagic Shock in Cardiovascular Healthy Swine. Frontiers in Immunology, 0, 13, .	4.8	5
140	Hypertonic lactate solutions: a new horizon for fluid resuscitation?. Intensive Care Medicine, 2008, 34, 1749-1751.	8.2	4
141	Does hyperoxia enhance susceptibility to secondary pulmonary infection in the ICU?. Critical Care, 2016, 20, 239.	5.8	4
142	Editorial: Translational Insights Into Mechanisms and Therapy of Organ Dysfunction in Sepsis and Trauma. Frontiers in Immunology, 2020, 11, 1987.	4.8	4
143	Pulmonary and renal protection: targeting PARP to ventilator-induced lung and kidney injury?. Critical Care, 2010, 14, 147.	5.8	3
144	A mouse is not a man: Should we abandon murine models in critical care research?*. Critical Care Medicine, 2011, 39, 2371-2373.	0.9	3

#	Article	IF	CITATIONS
145	Understanding the benefits and harms of oxygen therapy: response to comments by Akca. Intensive Care Medicine, 2015, 41, 1875-1875.	8.2	3
146	Cardiac surgery, a right target for hyperoxia?. Critical Care, 2016, 20, 162.	5.8	3
147	Biological Connection of Psychological Stress and Polytrauma under Intensive Care: The Role of Oxytocin and Hydrogen Sulfide. International Journal of Molecular Sciences, 2021, 22, 9192.	4.1	3
148	Human Placental Tissue Contains A Placental Lactogen–Derived Vasoinhibin. Journal of the Endocrine Society, 2022, 6, bvac029.	0.2	2
149	Brain Histology and Immunohistochemistry After Resuscitation From Hemorrhagic Shock in Swine With Pre-Existing Atherosclerosis and Sodium Thiosulfate (Na2S2O3) Treatment. Frontiers in Medicine, 0, 9, .	2.6	2
150	Preserved spontaneous breathing in acute lung injury: show me the money?. Intensive Care Medicine, 2008, 34, 397-399.	8.2	1
151	The Obesity Paradox Revisited. Shock, 2014, 41, 554-555.	2.1	1
152	Norepinephrine, the Intensivist's Swiss Army Knife for Circulatory Shock?. Shock, 2016, 46, 106-107.	2.1	1
153	Hyperoxia in Septic Shock. Critical Care Medicine, 2017, 45, 1796-1798.	0.9	1
154	Is hyperoxaemia a risk factor for ICU-acquired pneumonia? – Authors' reply. Lancet Respiratory Medicine,the, 2017, 5, e17.	10.7	1
155	Effects of Sodium Thiosulfate During Resuscitation From Trauma-and-Hemorrhage in Cystathionine-Î ³ -Lyase Knockout Mice With Diabetes Type 1. Frontiers in Medicine, 2022, 9, 878823.	2.6	1
156	Oxygen in the Heart. Shock, 2017, 47, 531-532.	2.1	0
157	Hyperoxie en réanimation. Anesthésie & Réanimation, 2019, 5, 91-97.	0.1	O