
Mikhail I Kusaykin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1013636/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure, biological activity, and enzymatic transformation of fucoidans from the brown seaweeds. Biotechnology Journal, 2008, 3, 904-915.	3.5	176
2	Structure, enzymatic transformation and anticancer activity of branched high molecular weight laminaran from brown alga Eisenia bicyclis. Carbohydrate Polymers, 2014, 99, 101-109.	10.2	94
3	Hydrolysis of Fucoidan by Fucoidanase Isolated from the Marine Bacterium, Formosa algae. Marine Drugs, 2013, 11, 2413-2430.	4.6	76
4	Structure, enzymatic transformation, anticancer activity of fucoidan and sulphated fucooligosaccharides from Sargassum horneri. Carbohydrate Polymers, 2017, 175, 654-660.	10.2	68
5	Structure and biological activity of a fucosylated chondroitin sulfate from the sea cucumber <i>Cucumaria japonica</i> . Glycobiology, 2016, 26, 449-459.	2.5	53
6	Structural characteristics and antitumor activity of a new chrysolaminaran from the diatom alga Synedra acus. Chemistry of Natural Compounds, 2010, 46, 1-4.	0.8	51
7	Modification of native fucoidan from Fucus evanescens by recombinant fucoidanase from marine bacteria Formosa algae. Carbohydrate Polymers, 2018, 193, 189-195.	10.2	51
8	Purification, cDNA cloning and homology modeling of endo-1,3-β-d-glucanase from scallop Mizuhopecten yessoensis. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2006, 143, 473-485.	1.6	47
9	The rolC gene induces expression of a pathogenesis-related β-1,3-glucanase in transformed ginseng cells. Phytochemistry, 2006, 67, 2225-2231.	2.9	46
10	Fucoidanases. Glycobiology, 2016, 26, cwv072.	2.5	43
11	A comparative study of specificity of fucoidanases from marine microorganisms and invertebrates. Journal of Applied Phycology, 2006, 18, 369-373.	2.8	42
12	Expression and biochemical characterization and substrate specificity of the fucoidanase from <i>Formosa algae</i> . Glycobiology, 2017, 27, 254-263.	2.5	39
13	Endo-1,4-fucoidanase from Vietnamese marine mollusk Lambis sp. which producing sulphated fucooligosaccharides. Journal of Molecular Catalysis B: Enzymatic, 2014, 102, 154-160.	1.8	38
14	Are multifunctional marine polysaccharides a myth or reality?. Frontiers in Chemistry, 2015, 3, 39.	3.6	32
15	Distribution of O-glycosylhydrolases in marine invertebrates. Enzymes of the marine mollusk Littorina kurila that catalyze fucoidan transformation. Biochemistry (Moscow), 2003, 68, 317-324.	1.5	30
16	Fucoidan Sulfatases from Marine Bacterium Wenyingzhuangia fucanilytica CZ1127T. Biomolecules, 2018, 8, 98.	4.0	29
17	Two New Alginate Lyases of PL7 and PL6 Families from Polysaccharide-Degrading Bacterium Formosa algae KMM 3553T: Structure, Properties, and Products Analysis. Marine Drugs, 2020, 18, 130.	4.6	28
18	Novel Enzyme Actions for Sulphated Galactofucan Depolymerisation and a New Engineering Strategy	4.6	27

for Molecular Stabilisation of Fucoidan Degrading Enzymes. Marine Drugs, 2018, 16, 422.

MIKHAIL I KUSAYKIN

#	Article	IF	CITATIONS
19	Enzymatic transformation and anti-tumor activity of Sargassum horneri fucoidan. Carbohydrate Polymers, 2020, 246, 116635.	10.2	27
20	Laminarans and 1,3-Î ² -D-glucanases. International Journal of Biological Macromolecules, 2020, 163, 1010-1025.	7.5	23
21	A new recombinant endo-1,3-β-d-glucanase from the marine bacterium Formosa algae KMM 3553: enzyme characteristics and transglycosylation products analysis. World Journal of Microbiology and Biotechnology, 2017, 33, 40.	3.6	22
22	Radiosensitizing effect of the fucoidan from brown alga Fucus evanescens and its derivative in human cancer cells. Carbohydrate Polymers, 2019, 205, 465-471.	10.2	22
23	Catalytic properties and mode of action of endo-(1→3)-β-d-glucanase and β-d-glucosidase from the marine mollusk Littorina kurila. Carbohydrate Research, 2008, 343, 2393-2400.	2.3	20
24	Expression and biochemical characterization of two recombinant fucoidanases from the marine bacterium Wenyingzhuangia fucanilytica CZ1127T. International Journal of Biological Macromolecules, 2020, 164, 3025-3037.	7.5	20
25	Enzymatic and molecular characterization of an endo-1,3-β-d-glucanase from the crystalline styles of the mussel Perna viridis. Carbohydrate Research, 2011, 346, 243-252.	2.3	13
26	Alginate Lyases: Substrates, Structure, Properties, and Prospects of Application. Russian Journal of Bioorganic Chemistry, 2018, 44, 386-396.	1.0	13
27	Relationship between the structure of a highly regular fucoidan from Fucus evanescens and its ability to form nanoparticles. International Journal of Biological Macromolecules, 2021, 185, 679-687.	7.5	13
28	Beta-1,3-glucanase from unfertilized eggs of the sea urchin Strongylocentrotus intermedius. Comparison with beta-1,3-glucanases of marine and terrestrial mollusks. Biochemistry (Moscow), 2003, 68, 529-533.	1.5	12
29	Isolation from the marine mollusk Lambis sp. and catalytic properties of an alginate lyase with rare substrate specificity. Chemistry of Natural Compounds, 2013, 49, 215-218.	0.8	9
30	Endo-(1→3)-β-d-glucanase GI from marine mollusk Littorina sitkana: Amino acid sequence and ESIMS/MS-estimated features of transglycosylation and hydrolysis reactions in comparison to analogous enzyme LIV from Pseudocardium sachalinensis. Journal of Molecular Catalysis B: Enzymatic, 2012, 75, 73-79.	1.8	8
31	Structural characterization of a P-selectin and EGFR dual-targeting fucoidan from Sargassum fusiforme. International Journal of Biological Macromolecules, 2022, 199, 86-95.	7.5	7
32	A Comparative Study of the Specificity of Fucoidanases of Marine Microorganisms and Invertebrates. Doklady Biochemistry and Biophysics, 2004, 396, 187-189.	0.9	6
33	Aryl sulfatase of unusual specificity from the liver of marine mollusk Littorina kurila. Russian Journal of Bioorganic Chemistry, 2006, 32, 63-70.	1.0	5
34	A Simple Plate Method for the Screening and Detection of Fucoidanases. Achievements in the Life Sciences, 2015, 9, 104-106.	1.3	4
35	Deglycosylation of isoflavonoid glycosides from Maackia amurensis cell culture by βâ^'D-glucosidase from Littorina sitkana hepatopancrease. Chemistry of Natural Compounds, 2011, 47, 197-200.	0.8	3
36	In Vitro and In Vivo Effects of Holotoxin A ₁ From the Sea Cucumber <i>Apostichopus japonicus</i> During Ionizing Radiation. Natural Product Communications, 2020, 15, 1934578X2093203.	0.5	3

#	Article	IF	CITATIONS
37	Two GH16 Endo-1,3-β-D-Glucanases from Formosa agariphila and F. algae Bacteria Have Complete Different Modes of Laminarin Digestion. Molecular Biotechnology, 2022, 64, 434-446.	2.4	3
38	Editorial: Marine biomolecules. Frontiers in Chemistry, 2015, 3, 52.	3.6	1
39	Activity of 1,3-β-D-Glucanases and Expression of CG-GLU1 in the Mussel Crenomytilus grayanus (Bivalvia) in Three Bays of the Sea of Japan. Achievements in the Life Sciences, 2015, 9, 69-77.	1.3	1
40	Fucoidan based nanoparticles: Structure and applications. , 2022, , 91-118.		0