Friedrich W Herberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1013608/publications.pdf

Version: 2024-02-01

71102 95266 5,730 138 41 citations h-index papers

g-index 151 151 151 5985 docs citations times ranked citing authors all docs

68

#	Article	IF	CITATIONS
1	The Tails of Protein Kinase A. Molecular Pharmacology, 2022, 101, 219-225.	2.3	15
2	Nanobodies as allosteric modulators of Parkinson's disease–associated LRRK2. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	15
3	Leucine rich repeat kinase 2 (<scp>LRRK2</scp>) peptide modulators: Recent advances and future directions. Peptide Science, 2022, 114, .	1.8	O
4	LRRK2 dynamics analysis identifies allosteric control of the crosstalk between its catalytic domains. PLoS Biology, 2022, 20, e3001427.	5.6	18
5	Regulation of Cardiac PKA Signaling by cAMP and Oxidants. Antioxidants, 2021, 10, 663.	5.1	6
6	cAMP-Dependent Signaling Pathways as Potential Targets for Inhibition of Plasmodium falciparum Blood Stages. Frontiers in Microbiology, 2021, 12, 684005.	3 . 5	3
7	PKA $\hat{Cl^2}$: a forgotten catalytic subunit of cAMP-dependent protein kinase opens new windows for PKA signaling and disease pathologies. Biochemical Journal, 2021, 478, 2101-2119.	3.7	13
8	Dynamical Basis of Allosteric Activation for the Plasmodium falciparum Protein Kinase G. Journal of Physical Chemistry B, 2021, 125, 6532-6542.	2.6	3
9	Conformation and dynamics of the kinase domain drive subcellular location and activation of LRRK2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	35
10	Transport Efficiency of Biofunctionalized Magnetic Particles Tailored by Surfactant Concentration. Langmuir, 2021, 37, 8498-8507.	3. 5	5
11	Drugging the Undruggable: How Isoquinolines and PKA Initiated the Era of Designed Protein Kinase Inhibitor Therapeutics. Biochemistry, 2021, 60, 3470-3484.	2.5	5
12	Allosteric Inhibition of Parkinson's-Linked LRRK2 by Constrained Peptides. ACS Chemical Biology, 2021, 16, 2326-2338.	3.4	15
13	G <i>α</i> sâ€"Protein Kinase A (PKA) Pathway Signalopathies: The Emerging Genetic Landscape and Therapeutic Potential of Human Diseases Driven by Aberrant G <i>α</i> s-PKA Signaling. Pharmacological Reviews, 2021, 73, 1326-1368.	16.0	27
14	Germline and Mosaic Variants in PRKACA and PRKACB Cause a Multiple Congenital Malformation Syndrome. American Journal of Human Genetics, 2020, 107, 977-988.	6.2	33
15	Molecular Basis for Ser/Thr Specificity in PKA Signaling. Cells, 2020, 9, 1548.	4.1	3
16	Kinase Domain Is a Dynamic Hub for Driving LRRK2 Allostery. Frontiers in Molecular Neuroscience, 2020, 13, 538219.	2.9	18
17	Inhibitors and fluorescent probes for protein kinase PKAcβ and its S54L mutant, identified in a patient with cortisol producing adenoma. Bioscience, Biotechnology and Biochemistry, 2020, 84, 1839-1845.	1.3	4
18	Analysis of Pigment-Dispersing Factor Neuropeptides and Their Receptor in a Velvet Worm. Frontiers in Endocrinology, 2020, 11, 273.	3.5	4

#	Article	IF	Citations
19	Binding of the Human 14-3-3 Isoforms to Distinct Sites in the Leucine-Rich Repeat Kinase 2. Frontiers in Neuroscience, 2020, 14, 302.	2.8	41
20	Mechanism of allosteric inhibition in the Plasmodium falciparum cGMP-dependent protein kinase. Journal of Biological Chemistry, 2020, 295, 8480-8491.	3.4	20
21	The dynamic switch mechanism that leads to activation of LRRK2 is embedded in the DFGÏ^ motif in the kinase domain. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14979-14988.	7.1	66
22	A Stapled Peptide Mimic of the Pseudosubstrate Inhibitor PKI Inhibits Protein Kinase A. Molecules, 2019, 24, 1567.	3.8	11
23	Chemical synthesis and biological activity of novel brominated 7-deazaadenosine-3′,5′-cyclic monophosphate derivatives. Bioorganic and Medicinal Chemistry, 2019, 27, 1704-1713.	3.0	4
24	Targeted Inhibition of <i>Plasmodium falciparum</i> Calcium-Dependent Protein Kinase 1 with a Constrained J Domain-Derived Disruptor Peptide. ACS Infectious Diseases, 2019, 5, 506-514.	3.8	12
25	PKA-RII subunit phosphorylation precedes activation by cAMP and regulates activity termination. Journal of Cell Biology, 2018, 217, 2167-2184.	5.2	40
26	Investigating PKA-RII specificity using analogs of the PKA:AKAP peptide inhibitor STAD-2. Bioorganic and Medicinal Chemistry, 2018, 26, 1174-1178.	3.0	10
27	cGMP Binding Domain D Mediates a Unique Activation Mechanism in <i>Plasmodium falciparum</i> PKG. ACS Infectious Diseases, 2018, 4, 415-423.	3.8	13
28	New cGMP analogues restrain proliferation and migration of melanoma cells. Oncotarget, 2018, 9, 5301-5320.	1.8	17
29	Nanostructured modified ultrananocrystalline diamond surfaces as immobilization support for lipases. Diamond and Related Materials, 2018, 90, 32-39.	3.9	3
30	S-Adenosyl-L-Homocysteine Hydrolase Inhibition by a Synthetic Nicotinamide Cofactor Biomimetic. Frontiers in Microbiology, 2018, 9, 505.	3.5	7
31	Activating PRKACB somatic mutation in cortisol-producing adenomas. JCI Insight, 2018, 3, .	5.0	44
32	A coupled photometric assay for characterization of S-adenosyl-l-homocysteine hydrolases in the physiological hydrolytic direction. New Biotechnology, 2017, 39, 11-17.	4.4	8
33	Crystal structure of cGMPâ€dependent protein kinase lβ cyclic nucleotideâ€bindingâ€B domain : Rpâ€cGMPS complex reveals an apoâ€kke, inactive conformation. FEBS Letters, 2017, 591, 221-230.	2.8	11
34	Metal coordination in kinases and pseudokinases. Biochemical Society Transactions, 2017, 45, 653-663.	3.4	11
35	Mutations of PKA cyclic nucleotide-binding domains reveal novel aspects of cyclic nucleotide selectivity. Biochemical Journal, 2017, 474, 2389-2403.	3.7	21
36	Divalent metal ions control activity and inhibition of protein kinases. Metallomics, 2017, 9, 1576-1584.	2.4	42

#	Article	IF	CITATIONS
37	A novel c-di-GMP binding domain in glycosyltransferase BgsA is responsible for the synthesis of a mixed-linkage \hat{l}^2 -glucan. Scientific Reports, 2017, 7, 8997.	3.3	12
38	Structural Basis of Analog Specificity in PKG I and II. ACS Chemical Biology, 2017, 12, 2388-2398.	3.4	11
39	Switching Cyclic Nucleotide-Selective Activation of Cyclic Adenosine Monophosphate-Dependent Protein Kinase Holoenzyme Reveals Distinct Roles of Tandem Cyclic Nucleotide-Binding Domains. ACS Chemical Biology, 2017, 12, 3057-3066.	3.4	1
40	Defining Aâ€Kinaseâ€Anchoring Protein (AKAP) Specificity for the Protein Kinaseâ€A Subunit RI (PKAâ€RI). ChemBioChem, 2016, 17, 693-697.	2.6	15
41	Crystal Structure of PKG I:cGMP Complex Reveals a cGMP-Mediated Dimeric Interface that Facilitates cGMP-Induced Activation. Structure, 2016, 24, 710-720.	3.3	39
42	Mechanism of Cyclic AMP Partial Agonism in Protein Kinase G (PKG). Biophysical Journal, 2016, 110, 514a.	0.5	0
43	AKAP18:PKA-RIIα structure reveals crucial anchor points for recognition of regulatory subunits of PKA. Biochemical Journal, 2016, 473, 1881-1894.	3.7	25
44	Utilisation of antibody microarrays for the selection of specific and informative antibodies from recombinant library binders of unknown quality. New Biotechnology, 2016, 33, 574-581.	4.4	10
45	Application of Synthetic Peptide Arrays To Uncover Cyclic Di-GMP Binding Motifs. Journal of Bacteriology, 2016, 198, 138-146.	2.2	15
46	cAMP-Dependent Protein Kinase and cGMP-Dependent Protein Kinase as Cyclic Nucleotide Effectors. Handbook of Experimental Pharmacology, 2015, 238, 105-122.	1.8	24
47	The role of a parasite-specific D-site in activation of Plasmodium falciparum cGMP-dependent protein kinase. BMC Pharmacology & Department of the protein kinase. BMC Pharmacology amp; Toxicology, 2015, 16 , .	2.4	0
48	Rational design of a PKA-based sensor for cGMP. BMC Pharmacology & Toxicology, 2015, 16, .	2.4	0
49	Divalent Metal lons Mg ²⁺ and Ca ²⁺ Have Distinct Effects on Protein Kinase A Activity and Regulation. ACS Chemical Biology, 2015, 10, 2303-2315.	3.4	57
50	PKA-Type I Selective Constrained Peptide Disruptors of AKAP Complexes. ACS Chemical Biology, 2015, 10, 1502-1510.	3.4	35
51	Neurochondrin is an atypical RIIα-specific A-kinase anchoring protein. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1667-1675.	2.3	9
52	Crystal Structures of the Carboxyl cGMP Binding Domain of the Plasmodium falciparum cGMP-dependent Protein Kinase Reveal a Novel Capping Triad Crucial for Merozoite Egress. PLoS Pathogens, 2015, 11, e1004639.	4.7	24
53	Structure-Guided Design of Selective Epac1 and Epac2 Agonists. PLoS Biology, 2015, 13, e1002038.	5.6	68
54	Structural and evolutionary divergence of cyclic nucleotide binding domains in eukaryotic pathogens: Implications for drug design. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1575-1585.	2.3	15

#	Article	IF	CITATIONS
55	FRET-based screening assay using small-molecule photoluminescent probes in lysate of cells overexpressing RFP-fused protein kinases. Analytical Biochemistry, 2015, 481, 10-17.	2.4	12
56	Rp-cAMPS Prodrugs Reveal the cAMP Dependence of First-Phase Glucose-Stimulated Insulin Secretion. Molecular Endocrinology, 2015, 29, 988-1005.	3.7	32
57	Mechanism of cAMP Partial Agonism in Protein Kinase G (PKG). Journal of Biological Chemistry, 2015, 290, 28631-28641.	3.4	44
58	Single Turnover Autophosphorylation Cycle of the PKA RII \hat{I}^2 Holoenzyme. PLoS Biology, 2015, 13, e1002192.	5.6	30
59	Pain modulators regulate the dynamics of PKA-RII phosphorylation in subgroups of sensory neurons. Journal of Cell Science, 2014, 127, 216-29.	2.0	32
60	Structure of cyclin G-associated kinase (GAK) trapped in different conformations using nanobodies. Biochemical Journal, 2014, 459, 59-69.	3.7	56
61	Parkinson-related LRRK2 mutation R1441C/G/H impairs PKA phosphorylation of LRRK2 and disrupts its interaction with 14-3-3. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E34-43.	7.1	103
62	Cyclic Nucleotide Mapping of Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) Channels. ACS Chemical Biology, 2014, 9, 1128-1137.	3.4	27
63	Isoform-Selective Disruption of AKAP-Localized PKA Using Hydrocarbon Stapled Peptides. ACS Chemical Biology, 2014, 9, 635-642.	3.4	75
64	Structural Basis for Cyclic-Nucleotide Selectivity and cGMP-Selective Activation of PKG I. Structure, 2014, 22, 116-124.	3.3	61
65	Dictyostelium Lipid Droplets Host Novel Proteins. Eukaryotic Cell, 2013, 12, 1517-1529.	3.4	32
66	Stimulation of Proglucagon Gene Expression by Human GPR119 in Enteroendocrine L-cell Line GLUTag. Molecular Endocrinology, 2013, 27, 1267-1282.	3.7	29
67	Structural and functional analysis of phosphorylation-specific binders of the kinase ERK from designed ankyrin repeat protein libraries. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2248-57.	7.1	91
68	A chemical proteomics approach to identify c-di-GMP binding proteins in Pseudomonas aeruginosa. Journal of Microbiological Methods, 2012, 88, 229-236.	1.6	52
69	Magneto-optic surface plasmon resonance optimum layers: Simulations for biological relevant refractive index changes. Journal of Applied Physics, 2012, 112, .	2.5	25
70	Designed Ankyrin Repeat Proteins (DARPins) as Novel Isoform-Specific Intracellular Inhibitors of c-Jun N-Terminal Kinases. ACS Chemical Biology, 2012, 7, 1356-1366.	3.4	56
71	Identification and Characterization of Novel Mutations in the Human Gene Encoding the Catalytic Subunit Calpha of Protein Kinase A (PKA). PLoS ONE, 2012, 7, e34838.	2.5	10
72	The testis-specific $\hat{Cl}\pm 2$ subunit of PKA is kinetically indistinguishable from the common $\hat{Cl}\pm 1$ subunit of PKA. BMC Biochemistry, 2011, 12, 40.	4.4	15

#	Article	IF	Citations
73	Cyclic nucleotides as affinity tools: Phosphorothioate cAMP analogues address specific PKA subproteomes. New Biotechnology, 2011, 28, 294-301.	4.4	18
74	Correction: Inhibition of T Cell Activation by Cyclic Adenosine 5′-Monophosphate Requires Lipid Raft Targeting of Protein Kinase A Type I by the A-Kinase Anchoring Protein Ezrin. Journal of Immunology, 2011, 186, 7269-7271.	0.8	1
75	Small Molecule AKAP-Protein Kinase A (PKA) Interaction Disruptors That Activate PKA Interfere with Compartmentalized cAMP Signaling in Cardiac Myocytes. Journal of Biological Chemistry, 2011, 286, 9079-9096.	3.4	92
76	Tetramerization Dynamics of C-terminal Domain Underlies Isoform-specific cAMP Gating in Hyperpolarization-activated Cyclic Nucleotide-gated Channels. Journal of Biological Chemistry, 2011, 286, 44811-44820.	3.4	101
77	The Pseudomonas aeruginosa Chemotaxis Methyltransferase CheR1 Impacts on Bacterial Surface Sampling. PLoS ONE, 2011, 6, e18184.	2.5	59
78	Uncoupling of baitâ€protein expression from the prey protein environment adds versatility for cell and tissue interaction proteomics and reveals a complex of CARPâ€1 and the PKA Cβ1 subunit. Proteomics, 2010, 10, 2890-2900.	2.2	5
79	A Community Standard Format for the Representation of Protein Affinity Reagents. Molecular and Cellular Proteomics, $2010, 9, 1-10$.	3.8	35
80	Regulation of cAMP-dependent Protein Kinases. Journal of Biological Chemistry, 2010, 285, 35910-35918.	3.4	19
81	Glycogen Synthase Kinase $3\hat{l}^2$ Interaction Protein Functions as an A-kinase Anchoring Protein. Journal of Biological Chemistry, 2010, 285, 5507-5521.	3.4	45
82	The Chicken Leukocyte Receptor Complex Encodes a Family of Different Affinity FcY Receptors. Journal of Immunology, 2009, 182, 6985-6992.	0.8	41
83	Regulatory Subunit I-controlled Protein Kinase A Activity Is Required for Apical Bile Canalicular Lumen Development in Hepatocytes. Journal of Biological Chemistry, 2009, 284, 20773-20780.	3.4	4
84	The High Biofilm-Encoding Bee Locus: A Second Pilus Gene Cluster in EnterococcusÂfaecalis?. Current Microbiology, 2009, 59, 206-211.	2.2	13
85	Chemical tools selectively target components of the PKA system. BMC Chemical Biology, 2009, 9, 3.	1.6	36
86	Biochemical characterization and cellular imaging of a novel, membrane permeable fluorescent cAMP analog. BMC Biochemistry, 2008, 9, 18.	4.4	17
87	Systematic interpretation of cyclic nucleotide binding studies using KinetXBase. Proteomics, 2008, 8, 1212-1220.	2.2	9
88	Seven successful years of Omics research: The Human Brain Proteome Project within the National German Research Network (NGFN). Proteomics, 2008, 8, 1116-1117.	2.2	4
89	Ndel1 alters its conformation by sequestering cAMP-specific phosphodiesterase-4D3 (PDE4D3) in a manner that is dynamically regulated through Protein Kinase A (PKA). Cellular Signalling, 2008, 20, 2356-2369.	3.6	41
90	Protein Kinase A-Dependent Step(s) in Hepatitis C Virus Entry and Infectivity. Journal of Virology, 2008, 82, 8797-8811.	3.4	87

#	Article	IF	Citations
91	Effect of metal ions on high-affinity binding of pseudosubstrate inhibitors to PKA. Biochemical Journal, 2008, 413, 93-101.	3.7	40
92	Inhibition of T Cell Activation by Cyclic Adenosine 5′-Monophosphate Requires Lipid Raft Targeting of Protein Kinase A Type I by the A-Kinase Anchoring Protein Ezrin. Journal of Immunology, 2007, 179, 5159-5168.	0.8	108
93	The chicken leukocyte receptor complex encodes a primordial, activating, high-affinity IgY Fc receptor. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11718-11723.	7.1	85
94	Comparative thermodynamic analysis of cyclic nucleotide binding to protein kinase A. Biological Chemistry, 2007, 388, 163-72.	2.5	24
95	Surface-plasmon-resonance-based biosensor with immobilized bisubstrate analog inhibitor for the determination of affinities of ATP- and protein-competitive ligands of cAMP-dependent protein kinase. Analytical Biochemistry, 2007, 362, 268-277.	2.4	36
96	ProteomeBinders: planning a European resource of affinity reagents for analysis of the human proteome. Nature Methods, 2007, 4, 13-17.	19.0	231
97	Plasma Protein Binding Properties to Immobilized Heparin and Heparin?Albumin Conjugate. Artificial Organs, 2007, 31, 466-471.	1.9	14
98	Molecular basis for isoform-specific autoregulation of protein kinase A. Cellular Signalling, 2007, 19, 2024-2034.	3.6	34
99	Biomolecular interaction analysis in functional proteomics. Journal of Neural Transmission, 2006, 113, 1015-1032.	2.8	44
100	High-affinity AKAP7δ–protein kinase A interaction yields novel protein kinase A-anchoring disruptor peptides. Biochemical Journal, 2006, 396, 297-306.	3.7	55
101	Characterization of A-kinase-anchoring disruptors using a solution-based assay. Biochemical Journal, 2006, 400, 493-499.	3.7	35
102	Differential binding studies applying functional protein microarrays and surface plasmon resonance. Proteomics, 2006, 6, 5132-5139.	2.2	15
103	HUPO Brain Proteome Project: Summary of the pilot phase and introduction of a comprehensive data reprocessing strategy. Proteomics, 2006, 6, 4890-4898.	2.2	47
104	Analysis of posttranslational modifications exemplified using protein kinase A. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 1788-1800.	2.3	20
105	Novel, isotype-specific sensors for protein kinase A subunit interaction based on bioluminescence resonance energy transfer (BRET). Cellular Signalling, 2006, 18, 1616-1625.	3.6	62
106	Quantification of cAMP antagonist action in vitro and in living cells. European Journal of Cell Biology, 2006, 85, 663-672.	3.6	14
107	Application of Bioluminescence Resonance Energy Transfer (BRET) for Biomolecular Interaction Studies. ChemBioChem, 2006, 7, 1007-1012.	2.6	70
108	PGE1 stimulation of HEK293 cells generates multiple contiguous domains with different [cAMP]: role of compartmentalized phosphodiesterases. Journal of Cell Biology, 2006, 175, 441-451.	5.2	171

#	Article	IF	CITATIONS
109	Direct Optical Detection of Protein–Ligand Interactions. , 2005, 305, 017-046.		23
110	Rearrangements in a hydrophobic core region mediate cAMP action in the regulatory subunit of PKA. Biological Chemistry, 2005, 386, 623-631.	2.5	7
111	Determination of Kinetic Data Using Surface Plasmon Resonance Biosensors. , 2004, 94, 299-320.		23
112	Identification of a Novel A-kinase Anchoring Protein 18 Isoform and Evidence for Its Role in the Vasopressin-induced Aquaporin-2 Shuttle in Renal Principal Cells. Journal of Biological Chemistry, 2004, 279, 26654-26665.	3.4	125
113	Merlin Links to the cAMP Neuronal Signaling Pathway by Anchoring the RlÎ ² Subunit of Protein Kinase A. Journal of Biological Chemistry, 2003, 278, 41167-41172.	3.4	44
114	Trapidil protects ischemic hearts from reperfusion injury by stimulating PKAII activity. Cardiovascular Research, 2003, 58, 602-610.	3.8	22
115	Activation of C-terminal Src kinase (Csk) by phosphorylation at serine-364 depends on the Csk-Src homology 3 domain. Biochemical Journal, 2003, 372, 271-278.	3.7	44
116	Applications of biomolecular interaction analysis in drug development. Targets, 2002, 1, 66-73.	0.3	26
117	Human phosphatidylinositol 4-kinase isoform PI4K92. FEBS Journal, 2001, 268, 2099-2106.	0.2	21
118	CDK1-mediated phosphorylation of the RIIα regulatory subunit of PKA works as a molecular switch that promotes dissociation of RIIα from centrosomes at mitosis. Journal of Cell Science, 2001, 114, 3243-3254.	2.0	32
119	Regulation of anchoring of the RIIα regulatory subunit of PKA to AKAP95 by threonine phosphorylation of RIIα: implications for chromosome dynamics at mitosis. Journal of Cell Science, 2001, 114, 3255-3264.	2.0	34
120	Study of the subunit interactions in myosin phosphatase by surface plasmon resonance. FEBS Journal, 2000, 267, 1687-1697.	0.2	66
121	Neurobeachin: A Protein Kinase A-Anchoring, <i>beige </i> /Chediak-Higashi Protein Homolog Implicated in Neuronal Membrane Traffic. Journal of Neuroscience, 2000, 20, 8551-8565.	3.6	204
122	Analysis of A-kinase anchoring protein (AKAP) interaction with protein kinase A (PKA) regulatory subunits: PKA isoform specificity in AKAP binding. Journal of Molecular Biology, 2000, 298, 329-339.	4.2	175
123	Surface plasmon resonance studies prove the interaction of skeletal muscle sarcoplasmic reticular Ca2+release channel/ryanodine receptor with calsequestrin. FEBS Letters, 2000, 472, 73-77.	2.8	50
124	PrKX Is a Novel Catalytic Subunit of the cAMP-dependent Protein Kinase Regulated by the Regulatory Subunit Type I. Journal of Biological Chemistry, 1999, 274, 5370-5378.	3.4	81
125	Recombinant Human Peroxisomal Targeting Signal Receptor PEX5. Journal of Biological Chemistry, 1999, 274, 5666-5673. Functional expression and characterisation of a new human phosphatidylinositol 4-kinase	3.4	160
126	PI4K2301Accession numbers for sequences employed are: PI4K230, human 2326227; PI4K97, human 1172504; PI4K230, rat D83538; PI4K230, bovine 2136690 and 2198791; PI4K200, S. cerevisiae D13717; PI4K92, bovine 2198789; PI4K92, human 1894947; PI4K92, rat 1906794; PI4K68, Chaenorabditis U41540; PI4K122, Dictyostelium 2120376D; PI4K95, S. pombe Z70043; PI4K120, S. cerevisiae S39245. The following nomenclature for PtdIns 4-kinase. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids,	2.4	29

#	Article	IF	CITATIONS
127	Dissection of the Nucleotide and Metalâ^Phosphate Binding Sites in cAMP-Dependent Protein Kinaseâ€. Biochemistry, 1999, 38, 6352-6360.	2.5	84
128	Stepwise Subunit Interaction Changes by Mono- and Bisphosphorylation of Cardiac Troponin I. Biochemistry, 1998, 37, 13516-13525.	2.5	46
129	A Stable α-Helical Domain at the N Terminus of the RIα Subunits of cAMP-dependent Protein Kinase Is a Novel Dimerization/Docking Motif. Journal of Biological Chemistry, 1997, 272, 28431-28437.	3.4	42
130	Importance of the A-helix of the catalytic subunit of cAMP-dependent protein kinase for stability and for orienting subdomains at the cleft interface. Protein Science, 1997, 6, 569-579.	7.6	62
131	Studies on the function of the different phosphoforms of cardiac troponin I., 1997,, 281-284.		0
132	Active Site Mutations Define the Pathway for the Cooperative Activation of cAMP-Dependent Protein Kinaseâ€. Biochemistry, 1996, 35, 2934-2942.	2.5	121
133	Regulatory subunit of protein kinase A: structure of deletion mutant with cAMP binding domains. Science, 1995, 269, 807-813.	12.6	378
134	Expression of a chimeric, cGMP-sensitive regulatory subunit of the cAMP-depedent protein kinase type \hat{l}_{\pm} . FEBS Letters, 1995, 374, 356-362.	2.8	6
135	Crosstalk between Domains in the Regulatory Subunit of cAMP-Dependent Protein Kinase: Influence of Amino Terminus on cAMP Binding and Holoenzyme Formation. Biochemistry, 1994, 33, 7485-7494.	2.5	87
136	Physiological inhibitors of the catalytic subunit of cAMP-dependent protein kinase: effect of magnesium-ATP on protein-protein interactions. Biochemistry, 1993, 32, 14015-14022.	2.5	93
137	cAMP-dependent protein kinase defines a family of enzymes. Philosophical Transactions of the Royal Society B: Biological Sciences, 1993, 340, 315-324.	4.0	38
138	Expression of the catalytic subunit of cAMP-dependent protein kinase in Escherichia coli: multiple isozymes reflect different phosphorylation states. Protein Engineering, Design and Selection, 1993, 6, 771-777.	2.1	103