Hee Jin Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10133066/publications.pdf

Version: 2024-02-01

516710 477307 2,481 29 16 29 h-index citations g-index papers 31 31 31 4947 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer Cell, 2017, 32, 42-56.e6.	16.8	1,282
2	Spatiotemporal Evolution of the Primary Glioblastoma Genome. Cancer Cell, 2015, 28, 318-328.	16.8	242
3	Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy. Nature Genetics, 2018, 50, 1399-1411.	21.4	145
4	Determinants of Response and Intrinsic Resistance to PD-1 Blockade in Microsatellite Instability–High Gastric Cancer. Cancer Discovery, 2021, 11, 2168-2185.	9.4	105
5	Transcriptional regulatory networks of tumor-associated macrophages that drive malignancy in mesenchymal glioblastoma. Genome Biology, 2020, 21, 216.	8.8	73
6	Hepatocellular carcinoma patients with high circulating cytotoxic T cells and intra-tumoral immune signature benefit from pembrolizumab: results from a single-arm phase 2 trial. Genome Medicine, 2022, 14, 1.	8.2	68
7	MDSC subtypes and CD39 expression on CD8 ⁺ T cells predict the efficacy of antiâ€PDâ€1 immunotherapy in patients with advanced NSCLC. European Journal of Immunology, 2020, 50, 1810-1819.	2.9	57
8	Potent effect of the MDM2 inhibitor AMG232 on suppression of glioblastoma stem cells. Cell Death and Disease, 2018, 9, 792.	6.3	47
9	Integrated pharmaco-proteogenomics defines two subgroups in isocitrate dehydrogenase wild-type glioblastoma with prognostic and therapeutic opportunities. Nature Communications, 2020, 11, 3288.	12.8	44
10	RNF20 Suppresses Tumorigenesis by Inhibiting the SREBP1c-PTTG1 Axis in Kidney Cancer. Molecular and Cellular Biology, 2017, 37 , .	2.3	40
11	PIP4K2A as a negative regulator of PI3K in PTEN <i>-</i> i>deficient glioblastoma. Journal of Experimental Medicine, 2019, 216, 1120-1134.	8.5	27
12	Translational Validation of Personalized Treatment Strategy Based on Genetic Characteristics of Glioblastoma. PLoS ONE, 2014, 9, e103327.	2.5	25
13	Anti-SEMA3A Antibody: A Novel Therapeutic Agent to Suppress Glioblastoma Tumor Growth. Cancer Research and Treatment, 2018, 50, 1009-1022.	3.0	21
14	Comprehensive pharmacogenomic characterization of gastric cancer. Genome Medicine, 2020, 12, 17.	8.2	20
15	Multi-Habitat Radiomics Unravels Distinct Phenotypic Subtypes of Glioblastoma with Clinical and Genomic Significance. Cancers, 2020, 12, 1707.	3.7	18
16	Pharmacogenomic analysis of patient-derived tumor cells in gynecologic cancers. Genome Biology, 2019, 20, 253.	8.8	16
17	Mutation-specific non-canonical pathway of PTEN as a distinct therapeutic target for glioblastoma. Cell Death and Disease, 2021, 12, 374.	6.3	15
18	Clinical Targeted Next-Generation sequencing Panels for Detection of Somatic Variants in Gliomas. Cancer Research and Treatment, 2020, 52, 41-50.	3.0	14

#	Article	IF	Citations
19	Identification of genomic and molecular traits that present therapeutic vulnerability to HGF-targeted therapy in glioblastoma. Neuro-Oncology, 2019, 21, 222-233.	1.2	12
20	Odorant receptors in cancer. BMB Reports, 2022, 55, 72-80.	2.4	11
21	Comprehensive molecular profiling to predict clinical outcomes in pancreatic cancer. Therapeutic Advances in Medical Oncology, 2021, 13, 175883592110384.	3.2	10
22	Clinical and molecular distinctions in patients with refractory colon cancer who benefit from regorafenib treatment. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592096584.	3.2	8
23	Tumor edge-to-core transition promotes malignancy in primary-to-recurrent glioblastoma progression in a PLAGL1/CD109-mediated mechanism. Neuro-Oncology Advances, 2020, 2, vdaa163.	0.7	8
24	Odorant G protein-coupled receptors as potential therapeutic targets for adult diffuse gliomas: a systematic analysis and review. BMB Reports, 2021, 54, 601-607.	2.4	7
25	Ethnic delineation of primary glioblastoma genome. Cancer Medicine, 2020, 9, 7352-7359.	2.8	6
26	Identification of transcriptome signature for predicting clinical response to bevacizumab in recurrent glioblastoma. Cancer Medicine, 2018, 7, 1774-1783.	2.8	5
27	Durvalumab and pazopanib in patients with advanced soft tissue sarcoma: A single-center, single-arm, phase 2 trial Journal of Clinical Oncology, 2021, 39, 11551-11551.	1.6	5
28	Sphere-Forming Culture for Expanding Genetically Distinct Patient-Derived Glioma Stem Cells by Cellular Growth Rate Screening. Cancers, 2020, 12, 549.	3.7	2
29	NIMG-20. MULTI-HABITAT RADIOMICS UNRAVELS DISTINCT PHENOTYPIC SUBTYPES OF GLIOBLASTOMA WITH CLINICAL AND GENOMIC SIGNIFICANCE. Neuro-Oncology, 2020, 22, ii151-ii151.	1.2	0