Jonathan W Bartlett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1013247/publications.pdf Version: 2024-02-01

IONATHAN W RADTLETT

#	Article	IF	CITATIONS
1	Comparison of Random Forest and Parametric Imputation Models for Imputing Missing Data Using MiCE: A CALIBER Study. American Journal of Epidemiology, 2014, 179, 764-774.	3.4	433
2	Head size, age and gender adjustment in MRI studies: a necessary nuisance?. NeuroImage, 2010, 53, 1244-1255.	4.2	421
3	Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model. Statistical Methods in Medical Research, 2015, 24, 462-487.	1.5	333
4	A meta-analysis of hippocampal atrophy rates in Alzheimer's disease. Neurobiology of Aging, 2009, 30, 1711-1723.	3.1	294
5	Tracking atrophy progression in familial Alzheimer's disease: a serial MRI study. Lancet Neurology, The, 2006, 5, 828-834.	10.2	292
6	Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer's disease. NeuroImage, 2010, 51, 1345-1359.	4.2	224
7	Brain MAPS: An automated, accurate and robust brain extraction technique using a template library. NeuroImage, 2011, 55, 1091-1108.	4.2	152
8	Increased brain atrophy rates in cognitively normal older adults with low cerebrospinal fluid Aβ1â€42. Annals of Neurology, 2010, 68, 825-834.	5.3	150
9	The structural neuroanatomy of music emotion recognition: Evidence from frontotemporal lobar degeneration. Neurolmage, 2011, 56, 1814-1821.	4.2	149
10	Cerebral atrophy in mild cognitive impairment and Alzheimer disease. Neurology, 2013, 80, 648-654.	1.1	133
11	Robust atrophy rate measurement in Alzheimer's disease using multi-site serial MRI: Tissue-specific intensity normalization and parameter selection. NeuroImage, 2010, 50, 516-523.	4.2	125
12	Multiple imputation of missing covariates with non-linear effects and interactions: an evaluation of statistical methods. BMC Medical Research Methodology, 2012, 12, 46.	3.1	118
13	Asymptotically Unbiased Estimation of Exposure Odds Ratios in Complete Records Logistic Regression. American Journal of Epidemiology, 2015, 182, 730-736.	3.4	108
14	Multiple imputation for handling systematically missing confounders in metaâ€analysis of individual participant data. Statistics in Medicine, 2013, 32, 4890-4905.	1.6	80
15	Motivational Enhancement Therapy with and without Cognitive Behavior Therapy to Treat Type 1 Diabetes. Annals of Internal Medicine, 2008, 149, 708.	3.9	78
16	Posterior cerebral atrophy in the absence of medial temporal lobe atrophy in pathologically-confirmed Alzheimer's disease. Neurobiology of Aging, 2012, 33, 627.e1-627.e12.	3.1	74
17	Voice processing in dementia: a neuropsychological and neuroanatomical analysis. Brain, 2011, 134, 2535-2547.	7.6	66
18	Vascular and Alzheimer's disease markers independently predict brain atrophy rate in Alzheimer's Disease Neuroimaging Initiative controls. Neurobiology of Aging, 2013, 34, 1996-2002.	3.1	66

JONATHAN W BARTLETT

#	Article	IF	CITATIONS
19	Gray matter atrophy rate as a marker of disease progression in AD. Neurobiology of Aging, 2012, 33, 1194-1202.	3.1	65
20	White matter hyperintensities are associated with disproportionate progressive hippocampal atrophy. Hippocampus, 2017, 27, 249-262.	1.9	62
21	APOE ε4 Is Associated with Disproportionate Progressive Hippocampal Atrophy in AD. PLoS ONE, 2014, 9, e97608.	2.5	53
22	Determining cut-points for Alzheimer's disease biomarkers: statistical issues, methods and challenges. Biomarkers in Medicine, 2012, 6, 391-400.	1.4	52
23	Improving upon the efficiency of complete case analysis when covariates are MNAR. Biostatistics, 2014, 15, 719-730.	1.5	49
24	Evaluation of twoâ€fold fully conditional specification multiple imputation for longitudinal electronic health record data. Statistics in Medicine, 2014, 33, 3725-3737.	1.6	46
25	Detecting treatment effects on brain atrophy in relapsing remitting multiple sclerosis: Sample size estimates. Journal of Neurology, 2007, 254, 1588-94.	3.6	44
26	Bootstrap inference for multiple imputation under uncongeniality and misspecification. Statistical Methods in Medical Research, 2020, 29, 3533-3546.	1.5	43
27	Visual ratings of atrophy in MCI: prediction of conversion and relationship with CSF biomarkers. Neurobiology of Aging, 2013, 34, 73-82.	3.1	41
28	Genetic Influences on Atrophy Patterns in Familial Alzheimer's Disease: A Comparison of APP and PSEN1 Mutations. Journal of Alzheimer's Disease, 2013, 35, 199-212.	2.6	36
29	Nurse-led psychological interventions to improve diabetes control: Assessing competencies. Patient Education and Counseling, 2011, 84, e37-e43.	2.2	34
30	Accent processing in dementia. Neuropsychologia, 2012, 50, 2233-2244.	1.6	31
31	Bayesian correction for covariate measurement error: A frequentist evaluation and comparison with regression calibration. Statistical Methods in Medical Research, 2018, 27, 1695-1708.	1.5	31
32	The Value of Hippocampal and Temporal Horn Volumes and Rates of Change in Predicting Future Conversion to AD. Alzheimer Disease and Associated Disorders, 2013, 27, 168-173.	1.3	28
33	Application of multiple imputation using the two-fold fully conditional specification algorithm in longitudinal clinical data. The Stata Journal, 2014, 14, 418-431.	2.2	26
34	Socioeconomic and early-life factors and risk of being overweight or obese in children of Swedish- and foreign-born parents. Pediatric Research, 2013, 74, 356-363.	2.3	24
35	Missing covariates in competing risks analysis. Biostatistics, 2016, 17, 751-763.	1.5	20
36	Disease Course Varies According to Age and Symptom Length in Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 64, 631-642.	2.6	20

JONATHAN W BARTLETT

#	Article	IF	CITATIONS
37	The Hazards of Period Specific and Weighted Hazard Ratios. Statistics in Biopharmaceutical Research, 2020, 12, 518-519.	0.8	19
38	Automated Measurement of Hippocampal Atrophy Using Fluid-Registered Serial MRI in AD and Controls. Journal of Computer Assisted Tomography, 2007, 31, 581-587.	0.9	18
39	Do the Effects of Psychological Treatments on Improving Glycemic Control in Type 1 Diabetes Persist Over Time? A Long-Term Follow-Up of a Randomized Controlled Trial. Psychosomatic Medicine, 2012, 74, 319-323.	2.0	18
40	Multiple imputation of missing covariates for the Cox proportional hazards cure model. Statistics in Medicine, 2016, 35, 4701-4717.	1.6	18
41	Linear mixed models for replication data to efficiently allow for covariate measurement error. Statistics in Medicine, 2009, 28, 3158-3178.	1.6	17
42	Covariate adjustment and estimation of mean response in randomised trials. Pharmaceutical Statistics, 2018, 17, 648-666.	1.3	17
43	Multiple Imputation of Missing Data in Nested Case-Control and Case-Cohort Studies. Biometrics, 2018, 74, 1438-1449.	1.4	16
44	Missing continuous outcomes under covariate dependent missingness in cluster randomised trials. Statistical Methods in Medical Research, 2017, 26, 1543-1562.	1.5	15
45	Automated Template-Based Hippocampal Segmentations from MRI: The Effects of 1.5T or 3T Field Strength on Accuracy. Neuroinformatics, 2014, 12, 405-412.	2.8	11
46	Maximum Likelihood Multiple Imputation: Faster Imputations and Consistent Standard Errors Without Posterior Draws. Statistical Science, 2021, 36, .	2.8	11
47	Standard and referenceâ€based conditional mean imputation. Pharmaceutical Statistics, 2022, 21, 1246-1257.	1.3	10
48	Missing binary outcomes under covariateâ€dependent missingness in cluster randomised trials. Statistics in Medicine, 2017, 36, 3092-3109.	1.6	9
49	Reference-Based Multiple Imputation—What is the Right Variance and How to Estimate It. Statistics in Biopharmaceutical Research, 2023, 15, 178-186.	0.8	8
50	Targeted Recruitment Using Cerebrospinal Fluid Biomarkers: Implications for Alzheimer's Disease Therapeutic Trials. Journal of Alzheimer's Disease, 2013, 34, 431-437.	2.6	7
51	Comparison of the within-reader and inter-vendor agreement of left ventricular circumferential strains and volume indices derived from cardiovascular magnetic resonance imaging. PLoS ONE, 2020, 15, e0242908.	2.5	6
52	Robustness of ANCOVA in randomized trials with unequal randomization. Biometrics, 2020, 76, 1036-1038.	1.4	4
53	Automated brain extraction using Multi-Atlas Propagation and Segmentation (MAPS). , 2011, , .		3
54	The Authors Reply. American Journal of Epidemiology, 2016, 184, 161-161.	3.4	1

4

#	Article	IF	CITATIONS
55	P4-121: AGE AND WMH HAVE INDEPENDENT ASSOCIATIONS WITH WHOLE BRAIN AND HIPPOCAMPAL ATROPHY RATES. , 2014, 10, P828-P829.		0
56	IC-P-126: WHITE MATTER HYPERINTENSITY VOLUME IS ASSOCIATED WITH DISPROPORTIONATE PROGRESSIVE HIPPOCAMPAL ATROPHY IN CONTROLS. , 2014, 10, P71-P73.		0
57	IC-P-127: AGE AND WMH HAVE INDEPENDENT ASSOCIATIONS WITH WHOLE BRAIN AND HIPPOCAMPAL ATROPHY RATES. , 2014, 10, P73-P74.		0
58	P4-127: WHITE MATTER HYPERINTENSITY VOLUME IS ASSOCIATED WITH DISPROPORTIONATE PROGRESSIVE HIPPOCAMPAL ATROPHY IN CONTROLS. , 2014, 10, P831-P833.		0