
## William R Wieder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1012833/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Quantifying global soil carbon losses in response to warming. Nature, 2016, 540, 104-108.                                                                                                                  | 27.8 | 879       |
| 2  | Global soil carbon projections are improved by modelling microbial processes. Nature Climate Change, 2013, 3, 909-912.                                                                                     | 18.8 | 772       |
| 3  | The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. Journal of Advances in Modeling Earth Systems, 2019, 11, 4245-4287.                      | 3.8  | 692       |
| 4  | Future productivity and carbon storage limited by terrestrial nutrient availability. Nature Geoscience, 2015, 8, 441-444.                                                                                  | 12.9 | 529       |
| 5  | Managing uncertainty in soil carbon feedbacks to climate change. Nature Climate Change, 2016, 6, 751-758.                                                                                                  | 18.8 | 491       |
| 6  | Beyond clay: towards an improved set of variables for predicting soil organic matter content.<br>Biogeochemistry, 2018, 137, 297-306.                                                                      | 3.5  | 423       |
| 7  | Understanding the dominant controls on litter decomposition. Journal of Ecology, 2016, 104, 229-238.                                                                                                       | 4.0  | 409       |
| 8  | Relationships among net primary productivity, nutrients and climate in tropical rain forest: a<br>panâ€ŧropical analysis. Ecology Letters, 2011, 14, 939-947.                                              | 6.4  | 379       |
| 9  | Persistence of soil organic carbon caused by functional complexity. Nature Geoscience, 2020, 13, 529-534.                                                                                                  | 12.9 | 363       |
| 10 | Toward more realistic projections of soil carbon dynamics by Earth system models. Global<br>Biogeochemical Cycles, 2016, 30, 40-56.                                                                        | 4.9  | 343       |
| 11 | Large divergence of satellite and Earth system model estimates of global terrestrial CO2Âfertilization.<br>Nature Climate Change, 2016, 6, 306-310.                                                        | 18.8 | 309       |
| 12 | Explicitly representing soil microbial processes in Earth system models. Global Biogeochemical Cycles, 2015, 29, 1782-1800.                                                                                | 4.9  | 286       |
| 13 | Climate fails to predict wood decomposition at regional scales. Nature Climate Change, 2014, 4, 625-630.                                                                                                   | 18.8 | 281       |
| 14 | Integrating microbial physiology and physio-chemical principles in soils with the MIcrobial-MIneral Carbon Stabilization (MIMICS) model. Biogeosciences, 2014, 11, 3899-3917.                              | 3.3  | 243       |
| 15 | Plot-scale manipulations of organic matter inputs to soils correlate with shifts in microbial community composition in a lowland tropical rain forest. Soil Biology and Biochemistry, 2010, 42, 2153-2160. | 8.8  | 223       |
| 16 | Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nature<br>Climate Change, 2017, 7, 817-822.                                                                       | 18.8 | 195       |
| 17 | Controls over leaf litter decomposition in wet tropical forests. Ecology, 2009, 90, 3333-3341.                                                                                                             | 3.2  | 176       |
| 18 | Addressing agricultural nitrogen losses in a changing climate. Nature Sustainability, 2018, 1, 399-408.                                                                                                    | 23.7 | 175       |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A test of the hierarchical model of litter decomposition. Nature Ecology and Evolution, 2017, 1, 1836-1845.                                                                                                            | 7.8  | 172       |
| 20 | Multiple models and experiments underscore large uncertainty in soil carbon dynamics.<br>Biogeochemistry, 2018, 141, 109-123.                                                                                          | 3.5  | 169       |
| 21 | Evaluating litter decomposition in earth system models with longâ€ŧerm litterbag experiments: an<br>example using the Community Land Model version 4 ( <scp>CLM</scp> 4). Global Change Biology, 2013,<br>19, 957-974. | 9.5  | 164       |
| 22 | Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere.<br>Ecology, 2010, 91, 2313-2323.                                                                                | 3.2  | 155       |
| 23 | Representing life in the Earth system with soil microbial functional traits in the MIMICS model.<br>Geoscientific Model Development, 2015, 8, 1789-1808.                                                               | 3.6  | 154       |
| 24 | Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet<br>tropical forest. Global Change Biology, 2012, 18, 2969-2979.                                                    | 9.5  | 152       |
| 25 | Do we need to understand microbial communities to predict ecosystem function? A comparison of statistical models of nitrogen cycling processes. Soil Biology and Biochemistry, 2014, 68, 279-282.                      | 8.8  | 143       |
| 26 | Ubiquity of human-induced changes in climate variability. Earth System Dynamics, 2021, 12, 1393-1411.                                                                                                                  | 7.1  | 131       |
| 27 | The age distribution of global soil carbon inferred from radiocarbon measurements. Nature<br>Geoscience, 2020, 13, 555-559.                                                                                            | 12.9 | 123       |
| 28 | Carbon cycle confidence and uncertainty: Exploring variation among soil biogeochemical models.<br>Global Change Biology, 2018, 24, 1563-1579.                                                                          | 9.5  | 122       |
| 29 | Effects of model structural uncertainty on carbon cycle projections: biological nitrogen fixation as a case study. Environmental Research Letters, 2015, 10, 044016.                                                   | 5.2  | 109       |
| 30 | Beyond microbes: Are fauna the next frontier in soil biogeochemical models?. Soil Biology and<br>Biochemistry, 2016, 102, 40-44.                                                                                       | 8.8  | 107       |
| 31 | Temperature and rainfall interact to control carbon cycling in tropical forests. Ecology Letters, 2017, 20, 779-788.                                                                                                   | 6.4  | 107       |
| 32 | Organic matter inputs shift soil enzyme activity and allocation patterns in a wet tropical forest.<br>Biogeochemistry, 2013, 114, 313-326.                                                                             | 3.5  | 91        |
| 33 | Improving understanding of soil organic matter dynamics by triangulating theories, measurements, and models. Biogeochemistry, 2018, 140, 1-13.                                                                         | 3.5  | 83        |
| 34 | Evaluating soil biogeochemistry parameterizations in Earth system models with observations. Global<br>Biogeochemical Cycles, 2014, 28, 211-222.                                                                        | 4.9  | 76        |
| 35 | Applying population and community ecology theory to advance understanding of belowground biogeochemistry. Ecology Letters, 2017, 20, 231-245.                                                                          | 6.4  | 69        |
| 36 | Parametric Controls on Vegetation Responses to Biogeochemical Forcing in the CLM5. Journal of Advances in Modeling Earth Systems, 2019, 11, 2879-2895.                                                                 | 3.8  | 69        |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Throughfall exclusion and leaf litter addition drive higher rates of soil nitrous oxide emissions from a lowland wet tropical forest. Global Change Biology, 2011, 17, 3195-3207.                            | 9.5 | 61        |
| 38 | Beyond Static Benchmarking: Using Experimental Manipulations to Evaluate Land Model Assumptions.<br>Global Biogeochemical Cycles, 2019, 33, 1289-1309.                                                       | 4.9 | 59        |
| 39 | Microbial dynamics and soil physicochemical properties explain largeâ€scale variations in soil organic carbon. Global Change Biology, 2020, 26, 2668-2685.                                                   | 9.5 | 56        |
| 40 | A comparison of plotâ€based satellite and Earth system model estimates of tropical forest net primary production. Global Biogeochemical Cycles, 2015, 29, 626-644.                                           | 4.9 | 55        |
| 41 | Tropical tree species composition affects the oxidation of dissolved organic matter from litter.<br>Biogeochemistry, 2008, 88, 127-138.                                                                      | 3.5 | 54        |
| 42 | Oscillatory behavior of two nonlinear microbial models of soil carbon decomposition.<br>Biogeosciences, 2014, 11, 1817-1831.                                                                                 | 3.3 | 53        |
| 43 | Model Structure and Climate Data Uncertainty in Historical Simulations of the Terrestrial Carbon<br>Cycle (1850–2014). Global Biogeochemical Cycles, 2019, 33, 1310-1326.                                    | 4.9 | 53        |
| 44 | Simulating Agriculture in the Community Land Model Version 5. Journal of Geophysical Research G:<br>Biogeosciences, 2020, 125, e2019JG005529.                                                                | 3.0 | 53        |
| 45 | Impacts of human alteration of the nitrogen cycle in the US on radiative forcing. Biogeochemistry, 2013, 114, 25-40.                                                                                         | 3.5 | 51        |
| 46 | Arctic Soil Governs Whether Climate Change Drives Global Losses or Gains in Soil Carbon.<br>Geophysical Research Letters, 2019, 46, 14486-14495.                                                             | 4.0 | 44        |
| 47 | Organic forms dominate hydrologic nitrogen export from a lowland tropical watershed. Ecology, 2015, 96, 1229-1241.                                                                                           | 3.2 | 40        |
| 48 | Quantifying microbial control of soil organic matter dynamics at macrosystem scales.<br>Biogeochemistry, 2021, 156, 19-40.                                                                                   | 3.5 | 37        |
| 49 | Experimental removal and addition of leaf litter inputs reduces nitrate production and loss in a lowland tropical forest. Biogeochemistry, 2013, 113, 629-642.                                               | 3.5 | 36        |
| 50 | Using research networks to create the comprehensive datasets needed to assess nutrient availability<br>as a key determinant of terrestrial carbon cycling. Environmental Research Letters, 2018, 13, 125006. | 5.2 | 36        |
| 51 | Stoichiometrically coupled carbon and nitrogen cycling in the MIcrobial-MIneral Carbon<br>Stabilization model version 1.0 (MIMICS-CN v1.0). Geoscientific Model Development, 2020, 13, 4413-4434.            | 3.6 | 35        |
| 52 | Divergent patterns of experimental and model-derived permafrost ecosystem carbon dynamics in response to Arctic warming. Environmental Research Letters, 2018, 13, 105002.                                   | 5.2 | 31        |
| 53 | The landscape of soil carbon data: Emerging questions, synergies and databases. Progress in Physical<br>Geography, 2019, 43, 707-719.                                                                        | 3.2 | 27        |
| 54 | Increasing the spatial and temporal impact of ecological research: A roadmap for integrating a novel terrestrial process into an Earth system model. Global Change Biology, 2022, 28, 665-684.               | 9.5 | 27        |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Leveraging Environmental Research and Observation Networks to Advance Soil Carbon Science.<br>Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1047-1055.                                             | 3.0  | 24        |
| 56 | Cover Crops May Cause Winter Warming in Snow overed Regions. Geophysical Research Letters, 2018,<br>45, 9889-9897.                                                                                                 | 4.0  | 22        |
| 57 | Optimizing Available Network Resources to Address Questions in Environmental Biogeochemistry.<br>BioScience, 2016, 66, 317-326.                                                                                    | 4.9  | 20        |
| 58 | Ecosystem function in complex mountain terrain: Combining models and longâ€term observations to<br>advance processâ€based understanding. Journal of Geophysical Research G: Biogeosciences, 2017, 122,<br>825-845. | 3.0  | 19        |
| 59 | A Comparison of the Diel Cycle of Modeled and Measured Latent Heat Flux During the Warm Season in<br>a Colorado Subalpine Forest. Journal of Advances in Modeling Earth Systems, 2018, 10, 617-651.                | 3.8  | 19        |
| 60 | Divergent controls of soil organic carbon between observations and process-based models.<br>Biogeochemistry, 2021, 156, 5-17.                                                                                      | 3.5  | 19        |
| 61 | Modest Gaseous Nitrogen Losses Point to Conservative Nitrogen Cycling in a Lowland Tropical Forest<br>Watershed. Ecosystems, 2018, 21, 901-912.                                                                    | 3.4  | 18        |
| 62 | Soil organic carbon is not just for soil scientists: measurement recommendations for diverse practitioners. Ecological Applications, 2021, 31, e02290.                                                             | 3.8  | 18        |
| 63 | SoDaH: the SOils DAta Harmonization database, an open-source synthesis of soil data from research networks, version 1.0. Earth System Science Data, 2021, 13, 1843-1854.                                           | 9.9  | 17        |
| 64 | Multi-century dynamics of the climate and carbon cycle under both high and net negative emissions scenarios. Earth System Dynamics, 2022, 13, 885-909.                                                             | 7.1  | 17        |
| 65 | An improved mechanistic model for ammonia volatilization in Earth system models: Flow of<br>Agricultural Nitrogen version 2 (FANv2). Geoscientific Model Development, 2020, 13, 4459-4490.                         | 3.6  | 16        |
| 66 | Digging Into the World Beneath Our Feet: Bridging Across Scales in the Age of Global Change. Eos, 2014, 95, 96-97.                                                                                                 | 0.1  | 13        |
| 67 | Palm oil wastewater methane emissions and bioenergy potential. Nature Climate Change, 2014, 4, 151-152.                                                                                                            | 18.8 | 13        |
| 68 | Pervasive alterations to snow-dominated ecosystem functions under climate change. Proceedings of the United States of America, 2022, 119, .                                                                        | 7.1  | 13        |
| 69 | Model-based analysis of environmental controls over ecosystem primary production in an alpine tundra dry meadow. Biogeochemistry, 2016, 128, 35-49.                                                                | 3.5  | 11        |
| 70 | The role of physical properties in controlling soil nitrogen cycling across a tundra-forest ecotone of the Colorado Rocky Mountains, U.S.A. Catena, 2020, 186, 104369.                                             | 5.0  | 11        |
| 71 | Microbes, roots and global carbon. Nature Climate Change, 2014, 4, 1052-1053.                                                                                                                                      | 18.8 | 10        |
| 72 | Decadal fates and impacts of nitrogen additions on temperate forest carbon storage: a data–model comparison. Biogeosciences, 2019, 16, 2771-2793.                                                                  | 3.3  | 10        |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Leveraging observed soil heterotrophic respiration fluxes as a novel constraint on globalâ€scale models. Global Change Biology, 2021, 27, 5392-5403.                                                                   | 9.5  | 10        |
| 74 | Interannual and Seasonal Drivers of Carbon Cycle Variability Represented by the Community Earth<br>System Model (CESM2). Global Biogeochemical Cycles, 2021, 35, e2021GB007034.                                        | 4.9  | 9         |
| 75 | Leveraging the signature of heterotrophic respiration on atmospheric<br>CO <sub>2</sub> for model benchmarking. Biogeosciences, 2020, 17,<br>1293-1308.                                                                | 3.3  | 8         |
| 76 | N and P constrain C in ecosystems under climate change: Role of nutrient redistribution, accumulation, and stoichiometry. Ecological Applications, 2022, 32, .                                                         | 3.8  | 8         |
| 77 | Greater stem growth, woody allocation, and aboveground biomass in Paleotropical forests than in<br>Neotropical forests. Ecology, 2019, 100, e02589.                                                                    | 3.2  | 7         |
| 78 | The signature of internal variability in the terrestrial carbon cycle. Environmental Research Letters, 2021, 16, 034022.                                                                                               | 5.2  | 7         |
| 79 | Synergies Among Environmental Science Research and Monitoring Networks: A Research Agenda.<br>Earth's Future, 2021, 9, e2020EF001631.                                                                                  | 6.3  | 5         |
| 80 | FIRE HISTORY OF THE AIKEN CANYON GRASSLAND-WOODLAND ECOTONE IN THE SOUTHERN FOOTHILLS OF THE COLORADO FRONT RANGE. Southwestern Naturalist, 2004, 49, 239-243.                                                         | 0.1  | 4         |
| 81 | Reply to 'Land unlikely to become large carbon source'. Nature Geoscience, 2015, 8, 893-894.                                                                                                                           | 12.9 | 4         |
| 82 | Patterns and trends of organic matter processing and transport: Insights from the US long-term ecological research network. Climate Change Ecology, 2021, 2, 100025.                                                   | 1.9  | 3         |
| 83 | Scale dependence in functional equivalence and difference in the soil microbiome. Soil Biology and Biochemistry, 2021, 163, 108451.                                                                                    | 8.8  | 3         |
| 84 | Nitrification and denitrification in the Community Land Model compared to observations at Hubbard<br>Brook Forest. Ecological Applications, 2022, , e2530.                                                             | 3.8  | 3         |
| 85 | Optimizing process-based models to predict current and future soil organic carbon stocks at high-resolution. Scientific Reports, 2022, 12, .                                                                           | 3.3  | 3         |
| 86 | Automated Integration of Continental-Scale Observations in Near-Real Time for Simulation and<br>Analysis of Biosphere–Atmosphere Interactions. Communications in Computer and Information<br>Science, 2020, , 204-225. | 0.5  | 1         |