Marcelo A Mori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1011085/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature, 2017, 542, 450-455.	27.8	1,107
2	Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nature Medicine, 2013, 19, 635-639.	30.7	579
3	Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response through a HIF-1α/Glycolysis-Dependent Axis. Cell Metabolism, 2020, 32, 437-446.e5.	16.2	578
4	Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. Cell Metabolism, 2019, 30, 656-673.	16.2	511
5	Lessons on Conditional Gene Targeting in Mouse Adipose Tissue. Diabetes, 2013, 62, 864-874.	0.6	281
6	Mir193b–365 is essential for brown fat differentiation. Nature Cell Biology, 2011, 13, 958-965.	10.3	273
7	Intrinsic Differences in Adipocyte Precursor Cells From Different White Fat Depots. Diabetes, 2012, 61, 1691-1699.	0.6	247
8	Role of MicroRNA Processing in Adipose Tissue in Stress Defense and Longevity. Cell Metabolism, 2012, 16, 336-347.	16.2	229
9	A regulatory subunit of phosphoinositide 3-kinase increases the nuclear accumulation of X-box–binding protein-1 to modulate the unfolded protein response. Nature Medicine, 2010, 16, 438-445.	30.7	176
10	Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy. Journal of Clinical Investigation, 2014, 124, 3339-3351.	8.2	149
11	Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications. FASEB Journal, 2014, 28, 4408-4419.	O.5	136
12	Micro <scp>RNA</scp> â€455 regulates brown adipogenesis via a novel <scp>HIF</scp> 1an― <scp>AMPK</scp> ― <scp>PGC</scp> 1α signaling network. EMBO Reports, 2015, 16, 1378-1393.	4.5	123
13	Activation of kinin receptor B1 limits encephalitogenic T lymphocyte recruitment to the central nervous system. Nature Medicine, 2009, 15, 788-793.	30.7	118
14	Impaired thermogenesis and adipose tissue development in mice with fat-specific disruption of insulin and IGF-1 signalling. Nature Communications, 2012, 3, 902.	12.8	116
15	PKCl´regulates hepatic insulin sensitivity and hepatosteatosis in mice and humans. Journal of Clinical Investigation, 2011, 121, 2504-2517.	8.2	115
16	Leptin regulation of Hsp60 impacts hypothalamic insulin signaling. Journal of Clinical Investigation, 2013, 123, 4667-4680.	8.2	101
17	Dicer1–miR-328–Bace1 signalling controls brown adipose tissue differentiation and function. Nature Cell Biology, 2016, 18, 328-336.	10.3	80
18	Mesodermal developmental gene Tbx15 impairs adipocyte differentiation and mitochondrial respiration. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2771-2776.	7.1	75

MARCELO A MORI

#	Article	IF	CITATIONS
19	Shortcuts to a functional adipose tissue: The role of small non-coding RNAs. Redox Biology, 2017, 12, 82-102.	9.0	70
20	A Systems Biology Approach Identifies Inflammatory Abnormalities Between Mouse Strains Prior to Development of Metabolic Disease. Diabetes, 2010, 59, 2960-2971.	0.6	69
21	A Kinase-Independent Role for Unoccupied Insulin and IGF-1 Receptors in the Control of Apoptosis. Science Signaling, 2010, 3, ra87.	3.6	67
22	Polyphenol-rich green tea extract improves adipose tissue metabolism by down-regulating miR-335 expression and mitigating insulin resistance and inflammation. Journal of Nutritional Biochemistry, 2018, 57, 170-179.	4.2	67
23	Kinin B1 Receptor Deficiency Leads to Leptin Hypersensitivity and Resistance to Obesity. Diabetes, 2008, 57, 1491-1500.	0.6	61
24	Resistance Training Prevents Muscle Loss Induced by Caloric Restriction in Obese Elderly Individuals: A Systematic Review and Meta-Analysis. Nutrients, 2018, 10, 423.	4.1	51
25	Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice. Aging, 2016, 8, 1201-1222.	3.1	47
26	Enoxacin extends lifespan of C. elegans by inhibiting miR-34-5p and promoting mitohormesis. Redox Biology, 2018, 18, 84-92.	9.0	44
27	Insulin and insulin-like growth factor 1 receptors are required for normal expression of imprinted genes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14512-14517.	7.1	43
28	ACE Activity Is Modulated by Kinin B 2 Receptor. Hypertension, 2008, 51, 689-695.	2.7	39
29	Inducible Transgenic Rat Model for Diabetes Mellitus Based on shRNA-Mediated Gene Knockdown. PLoS ONE, 2009, 4, e5124.	2.5	37
30	Dectin-1 Activation Exacerbates Obesity and Insulin Resistance in the Absence of MyD88. Cell Reports, 2017, 19, 2272-2288.	6.4	36
31	Predisposition to atherosclerosis and aortic aneurysms in mice deficient in kinin B1 receptor and apolipoprotein E. Journal of Molecular Medicine, 2009, 87, 953-963.	3.9	35
32	Role of the kinin B1 receptor in insulin homeostasis and pancreatic islet function. Biological Chemistry, 2006, 387, 431-436.	2.5	34
33	Metabolic Syndrome: Is Nlrp3 Inflammasome a Trigger or a Target of Insulin Resistance?. Circulation Research, 2011, 108, 1160-1162.	4.5	33
34	Disrupted Cell Cycle Control in Cultured Endometrial Cells from Patients with Endometriosis Harboring the Progesterone Receptor Polymorphism PROGINS. American Journal of Pathology, 2009, 175, 215-224.	3.8	32
35	Kinin B1 Receptor in Adipocytes Regulates Glucose Tolerance and Predisposition to Obesity. PLoS ONE, 2012, 7, e44782.	2.5	28
36	Bradykinin inhibits hepatic gluconeogenesis in obese mice. Laboratory Investigation, 2012, 92, 1419-1427.	3.7	27

MARCELO A MORI

#	Article	IF	CITATIONS
37	Altered Glucose Homeostasis and Hepatic Function in Obese Mice Deficient for Both Kinin Receptor Genes. PLoS ONE, 2012, 7, e40573.	2.5	26
38	Abnormal brown adipose tissue mitochondrial structure and function in IL10 deficiency. EBioMedicine, 2019, 39, 436-447.	6.1	22
39	Enoxacin induces oxidative metabolism and mitigates obesity by regulating adipose tissue miRNA expression. Science Advances, 2020, 6, .	10.3	21
40	DICER: structure, function, and regulation. Biophysical Reviews, 2021, 13, 1081-1090.	3.2	20
41	RNA interference may result in unexpected phenotypes in Caenorhabditis elegans. Nucleic Acids Research, 2019, 47, 3957-3969.	14.5	19
42	Dynamic changes in DICER levels in adipose tissue control metabolic adaptations to exercise. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23932-23941.	7.1	19
43	Dietary Protein Restriction Improves Metabolic Dysfunction in Patients with Metabolic Syndrome in a Randomized, Controlled Trial. Nutrients, 2022, 14, 2670.	4.1	19
44	IMPACT is a GCN2 inhibitor that limits lifespan in Caenorhabditis elegans. BMC Biology, 2016, 14, 87.	3.8	16
45	Crotamine induces browning of adipose tissue and increases energy expenditure in mice. Scientific Reports, 2018, 8, 5057.	3.3	16
46	Modulation of kinin B1 receptor expression by endogenous angiotensin II in hypertensive rats. Regulatory Peptides, 2006, 136, 92-97.	1.9	15
47	Dietary sulfur amino acid restriction upregulates DICER to confer beneficial effects. Molecular Metabolism, 2019, 29, 124-135.	6.5	15
48	Epigenetic changes during ageing and their underlying mechanisms. Biogerontology, 2020, 21, 423-443.	3.9	15
49	miRNA-22 deletion limits white adipose expansion and activates brown fat to attenuate high-fat diet-induced fat mass accumulation. Metabolism: Clinical and Experimental, 2021, 117, 154723.	3.4	15
50	Extracellular miRNAs in redox signaling: Health, disease and potential therapies. Free Radical Biology and Medicine, 2021, 173, 170-187.	2.9	15
51	Kinin B1 receptor stimulation modulates leptin homeostasis. Evidence for an insulin-dependent mechanism. International Immunopharmacology, 2008, 8, 242-246.	3.8	14
52	High aminopeptidase A activity contributes to blood pressure control in ob/ob mice by AT2 receptor-dependent mechanism. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H437-H445.	3.2	9
53	Opposing action of NCoR1 and PGC-1α in mitochondrial redox homeostasis. Free Radical Biology and Medicine, 2019, 143, 203-208.	2.9	9
54	miR-1 coordinately regulates lysosomal v-ATPase and biogenesis to impact proteotoxicity and muscle function during aging. ELife, 2021, 10, .	6.0	9

MARCELO A MORI

#	Article	IF	CITATIONS
55	Kinin B1 and B2 receptor deficiency protects against obesity induced by a high-fat diet and improves glucose tolerance in mice. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2015, 8, 399.	2.4	8
56	The angiotensin-l-converting enzyme insertion/deletion in polymorphic element codes for an AluYa5 RNA that downregulates gene expression. Pharmacogenomics Journal, 2018, 18, 517-527.	2.0	8
57	Kinin B1 Receptor Acts in Adipose Tissue to Control Fat Distribution in a Cell-Nonautonomous Manner. Diabetes, 2019, 68, 1614-1623.	0.6	7
58	The GCN2 inhibitor IMPACT contributes to diet-induced obesity and body temperature control. PLoS ONE, 2019, 14, e0217287.	2.5	7
59	Impact of nuclear distribution element genes in the typical and atypical antipsychotics effects on nematode Caenorhabditis elegans: Putative animal model for studying the pathways correlated to schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 92, 19-30.	4.8	7
60	Structural basis for dimer formation of the <scp>CRISPR</scp> â€associated protein Csm2 of <i>Thermotoga maritima</i> . FEBS Journal, 2016, 283, 694-703.	4.7	6
61	Circulating molecules that control brown/beige adipocyte differentiation and thermogenic capacity. Cell Biology International, 2018, 42, 701-710.	3.0	4
62	Editorial: Non-Coding RNAs: Entwining Metabolism and Aging. Frontiers in Endocrinology, 2018, 9, 111.	3.5	4
63	Mitochondrial Bioenergetics and Quality Control Mechanisms in Health and Disease. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-3.	4.0	4
64	Aging: a New Perspective on an Old Issue. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20200437.	0.8	3
65	Genetically altered animals in the study of the metabolic functions of peptide hormone systems. Current Opinion in Nephrology and Hypertension, 2008, 17, 11-17.	2.0	2
66	The yeast protein Ubx4p contributes to mitochondrial respiration and lithium–galactose–mediated activation of the unfolded protein response. Journal of Biological Chemistry, 2020, 295, 3773-3782.	3.4	2
67	A Method to Induce Brown/Beige Adipocyte Differentiation from Murine Preadipocytes. Bio-protocol, 2021, 11, e4265.	0.4	2
68	Effect of Exercise on Acute Senescent Lymphocyte Counts: A Systematic Review and Meta-Analysis. Gerontology, 2022, 68, 961-975.	2.8	2
69	Purification, crystallization, crystallographic analysis and phasing of the CRISPR-associated protein Csm2 from <i>Thermotoga maritima</i> . Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 1223-1227.	0.8	1
70	Autophagy: mechanisms and applications—a session at the 20th IUPAB congress/45th SBBf annual meeting/50th SBBq annual meeting. Biophysical Reviews, 2021, 13, 857-858.	3.2	1
71	Regulation of monoamine levels by typical and atypical antipsychotics in Caenorhabditis elegans mutant for nuclear distribution element genes. Neurochemistry International, 2021, 147, 105047.	3.8	0

72 Immune Regulation of Adipose Tissue Browning. , 2022, , 221-234.