Cristina Zanchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10110329/publications.pdf

Version: 2024-02-01

28 papers

2,122 citations

304743

22

h-index

28 g-index

28 all docs

28 docs citations

times ranked

28

2359 citing authors

#	Article	IF	CITATIONS
1	Empagliflozin protects glomerular endothelial cell architecture in experimental diabetes through the <scp>VEGFâ€A</scp> /caveolinâ€1/ <scp>PV</scp> â€1 signaling pathway. Journal of Pathology, 2022, 256, 468-479.	4.5	21
2	Therapeutic Small Interfering RNA Targeting Complement C3 in a Mouse Model of C3 Glomerulopathy. Journal of Immunology, 2022, 208, 1772-1781.	0.8	2
3	CER-001 ameliorates lipid profile and kidney disease in a mouse model of familial LCAT deficiency. Metabolism: Clinical and Experimental, 2021, 116, 154464.	3.4	10
4	Post-translational modifications by SIRT3 de-2-hydroxyisobutyrylase activity regulate glycolysis and enable nephrogenesis. Scientific Reports, 2021, 11, 23580.	3.3	10
5	Manipulating Sirtuin 3 pathway ameliorates renal damage in experimental diabetes. Scientific Reports, 2020, 10, 8418.	3.3	51
6	SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy. JCl Insight, $2018,3,.$	5.0	114
7	ADAMTS13 Deficiency Shortens the Life Span of Mice With Experimental Diabetes. Diabetes, 2018, 67, 2069-2083.	0.6	8
8	MicroRNA-184 is a downstream effector of albuminuria driving renal fibrosis in rats with diabetic nephropathy. Diabetologia, 2017, 60, 1114-1125.	6.3	54
9	Effects of MCP-1 Inhibition by Bindarit Therapy in a Rat Model of Polycystic Kidney Disease. Nephron, 2015, 129, 52-61.	1.8	43
10	Key pathways in renal disease progression of experimental diabetes: FigureÂ1:. Nephrology Dialysis Transplantation, 2015, 30, iv54-iv59.	0.7	16
11	Renal Expression of FGF23 in Progressive Renal Disease of Diabetes and the Effect of Ace Inhibitor. PLoS ONE, 2013, 8, e70775.	2.5	75
12	Lack of the Lectin-like Domain of Thrombomodulin Worsens Shiga Toxin-Associated Hemolytic Uremic Syndrome in Mice. Journal of Immunology, 2012, 189, 3661-3668.	0.8	35
13	Mesenchymal stem cell therapy promotes renal repair by limiting glomerular podocyte and progenitor cell dysfunction in adriamycin-induced nephropathy. American Journal of Physiology - Renal Physiology, 2012, 303, F1370-F1381.	2.7	88
14	Protein load impairs factor H binding promoting complement-dependent dysfunction of proximal tubular cells. Kidney International, 2009, 75, 1050-1059.	5. 2	28
15	Complement-Mediated Dysfunction of Glomerular Filtration Barrier Accelerates Progressive Renal Injury. Journal of the American Society of Nephrology: JASN, 2008, 19, 1158-1167.	6.1	63
16	Fractalkine and CX3CR1 Mediate Leukocyte Capture by Endothelium in Response to Shiga Toxin. Journal of Immunology, 2008, 181, 1460-1469.	0.8	37
17	Shigatoxin-Induced Endothelin-1 Expression in Cultured Podocytes Autocrinally Mediates Actin Remodeling. American Journal of Pathology, 2006, 169, 1965-1975.	3.8	92
18	Imatinib ameliorates renal disease and survival in murine lupus autoimmune disease. Kidney International, 2006, 70, 97-103.	5.2	71

#	Article	IF	CITATIONS
19	Transcriptional Regulation of Nephrin Gene by Peroxisome Proliferator–Activated Receptor-γ Agonist: Molecular Mechanism of the Antiproteinuric Effect of Pioglitazone. Journal of the American Society of Nephrology: JASN, 2006, 17, 1624-1632.	6.1	76
20	In Response to Protein Load Podocytes Reorganize Cytoskeleton and Modulate Endothelin-1 Gene. American Journal of Pathology, 2005, 166, 1309-1320.	3.8	151
21	Protein Overload Induces Fractalkine Upregulation in Proximal Tubular Cells through Nuclear Factor ήB– and p38 Mitogen-Activated Protein Kinase–Dependent Pathways. Journal of the American Society of Nephrology: JASN, 2003, 14, 2436-2446.	6.1	118
22	Add-On Anti–TGF-β Antibody to ACE Inhibitor Arrests Progressive Diabetic Nephropathy in the Rat. Journal of the American Society of Nephrology: JASN, 2003, 14, 1816-1824.	6.1	177
23	How To Fully Protect the Kidney in a Severe Model of Progressive Nephropathy. Journal of the American Society of Nephrology: JASN, 2002, 13, 2898-2908.	6.1	156
24	Transforming Growth Factor- \hat{l}^21 Is Up-Regulated by Podocytes in Response to Excess Intraglomerular Passage of Proteins. American Journal of Pathology, 2002, 161, 2179-2193.	3.8	138
25	Effect of combining ACE inhibitor and statin in severe experimental nephropathy. Kidney International, 2002, 61, 1635-1645.	5. 2	103
26	Shiga toxin-2 triggers endothelial leukocyte adhesion and transmigration via NF-κB dependent up-regulation of IL-8 and MCP-11. Kidney International, 2002, 62, 846-856.	5.2	105
27	Protein overload-induced NF-kappaB activation in proximal tubular cells requires H(2)O(2) through a PKC-dependent pathway. Journal of the American Society of Nephrology: JASN, 2002, 13, 1179-89.	6.1	135
28	Protein traffic activates NF-kB gene signaling and promotes MCP-1–dependent interstitial inflammation. American Journal of Kidney Diseases, 2000, 36, 1226-1241.	1.9	145