
Shinji Yamazaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1010964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SAM-Competitive PRMT5 Inhibitor PF-06939999 Demonstrates Antitumor Activity in Splicing Dysregulated NSCLC with Decreased Liability of Drug Resistance. Molecular Cancer Therapeutics, 2022, 21, 3-15.	4.1	29
2	A retrospective analysis of actionable pharmacogenetic/genomic biomarker language in FDA labels. Clinical and Translational Science, 2021, 14, 1412-1422.	3.1	3
3	Evaluation of Prediction Accuracy for Volume of Distribution in Rat and Human Using InÂVitro, InÂVivo, PBPK and QSAR Methods. Journal of Pharmaceutical Sciences, 2021, 110, 1799-1823.	3.3	13
4	Quantitative prediction of breast cancer resistant protein mediated drugâ€drug interactions using physiologicallyâ€based pharmacokinetic modeling. CPT: Pharmacometrics and Systems Pharmacology, 2021, 10, 1018-1031.	2.5	22
5	Unraveling pleiotropic effects of rifampicin by using physiologically based pharmacokinetic modeling: Assessing the induction magnitude of Pâ€glycoprotein–cytochrome P450 3A4 dual substrates. CPT: Pharmacometrics and Systems Pharmacology, 2021, 10, 1485-1496.	2.5	12
6	Translational Pharmacokinetic-Pharmacodynamic Modeling for an Orally Available Novel Inhibitor of Epigenetic Regulator Enhancer of Zeste Homolog 2. Journal of Pharmacology and Experimental Therapeutics, 2020, 373, 220-229.	2.5	4
7	Physiologicallyâ€Based Pharmacokinetic Modeling Approach to Predict Rifampinâ€Mediated Intestinal Pâ€Glycoprotein Induction. CPT: Pharmacometrics and Systems Pharmacology, 2019, 8, 634-642.	2.5	41
8	Relationships of Changes in Pharmacokinetic Parameters of Substrate Drugs in Drug–Drug Interactions on Metabolizing Enzymes and Transporters. Journal of Clinical Pharmacology, 2018, 58, 1053-1060.	2.0	2
9	Application of Physiologically Based Pharmacokinetic Modeling in Understanding Bosutinib Drug-Drug Interactions: Importance of Intestinal P-Glycoprotein. Drug Metabolism and Disposition, 2018, 46, 1200-1211.	3.3	19
10	Found in Translation: Maximizing the Clinical Relevance of Nonclinical Oncology Studies. Clinical Cancer Research, 2017, 23, 1080-1090.	7.0	26
11	Translational modeling and simulation approaches for molecularly targeted small molecule anticancer agents from bench to bedside. Expert Opinion on Drug Metabolism and Toxicology, 2016, 12, 253-265.	3.3	10
12	Prediction of Drug-Drug Interactions with Crizotinib as the CYP3A Substrate Using a Physiologically Based Pharmacokinetic Model. Drug Metabolism and Disposition, 2015, 43, 1417-1429.	3.3	45
13	Mechanistic Understanding of Translational Pharmacokinetic-Pharmacodynamic Relationships in Nonclinical Tumor Models: A Case Study of Orally Available Novel Inhibitors of Anaplastic Lymphoma Kinase. Drug Metabolism and Disposition, 2015, 43, 54-62.	3.3	21
14	Translational Pharmacokinetic-Pharmacodynamic Modeling for an Orally Available Novel Inhibitor of Anaplastic Lymphoma Kinase and c-Ros Oncogene 1. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 67-76.	2.5	27
15	Translational Pharmacokinetic-Pharmacodynamic Modeling from Nonclinical to Clinical Development: A Case Study of Anticancer Drug, Crizotinib. AAPS Journal, 2013, 15, 354-366.	4.4	46
16	Prediction of Oral Pharmacokinetics of cMet Kinase Inhibitors in Humans: Physiologically Based Pharmacokinetic Model Versus Traditional One-Compartment Model. Drug Metabolism and Disposition, 2011, 39, 383-393.	3.3	59
17	Application of Stable Isotope Methodology in the Evaluation of the Pharmacokinetics of (<i>S,S</i>)-3-[3-(Methylsulfonyl)phenyl]-1-propylpiperidine Hydrochloride in Rats. Drug Metabolism and Disposition, 2009, 37, 937-945.	3.3	2
18	Pharmacokinetic-Pharmacodynamic Modeling of Biomarker Response and Tumor Growth Inhibition to an Orally Available cMet Kinase Inhibitor in Human Tumor Xenograft Mouse Models. Drug Metabolism and Disposition, 2008, 36, 1267-1274.	3.3	92

#	Article	IF	CITATIONS
19	COMPARISON OF PREDICTION METHODS FOR IN VIVO CLEARANCE OF (S,S)-3-[3-(METHYLSULFONYL)PHENYL]-1-PROPYLPIPERIDINE HYDROCHLORIDE, A DOPAMINE D2 RECEPTOR ANTAGONIST, IN HUMANS. Drug Metabolism and Disposition, 2004, 32, 398-404.	3.3	7