
Nickolai A Barlev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1010452/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anti-cancer Virotherapy in Russia: Lessons from the Past, Current Challenges and Prospects for the Future. Current Pharmaceutical Biotechnology, 2023, 24, 266-278.	0.9	3
2	Zeb1-mediated autophagy enhances resistance of breast cancer cells to genotoxic drugs. Biochemical and Biophysical Research Communications, 2022, 589, 29-34.	1.0	10
3	Nano-molecularly imprinted polymers (nanoMIPs) as a novel approach to targeted drug delivery in nanomedicine. RSC Advances, 2022, 12, 3957-3968.	1.7	21
4	The Role of Lysine Methyltransferase SET7/9 in Proliferation and Cell Stress Response. Life, 2022, 12, 362.	1.1	6
5	The Role of E3 Ligase Pirh2 in Disease. Cells, 2022, 11, 1515.	1.8	5
6	How Should the Worldwide Knowledge of Traditional Cancer Healing Be Integrated with Herbs and Mushrooms into Modern Molecular Pharmacology?. Pharmaceuticals, 2022, 15, 868.	1.7	7
7	Interplay between p53 and non-coding RNAs in the regulation of EMT in breast cancer. Cell Death and Disease, 2021, 12, 17.	2.7	40
8	Proteomic Analysis of Zeb1 Interactome in Breast Carcinoma Cells. Molecules, 2021, 26, 3143.	1.7	9
9	Emerging roles of cancer-testis antigenes, semenogelin 1 and 2, in neoplastic cells. Cell Death Discovery, 2021, 7, 97.	2.0	5
10	The RNA-binding protein HuR is a novel target of Pirh2 E3 ubiquitin ligase. Cell Death and Disease, 2021, 12, 581.	2.7	14
11	Regulation of autophagy flux by E3 ubiquitin ligase Pirh2 in lung cancer. Biochemical and Biophysical Research Communications, 2021, 563, 119-125.	1.0	4
12	Set7/9 controls proliferation and genotoxic drug resistance of NSCLC cells. Biochemical and Biophysical Research Communications, 2021, 572, 41-48.	1.0	12
13	p53-Independent Effects of Set7/9 Lysine Methyltransferase on Metabolism of Non-Small Cell Lung Cancer Cells. Frontiers in Oncology, 2021, 11, 706668.	1.3	6
14	Distinct p63 and p73 Protein Interactions Predict Specific Functions in mRNA Splicing and Polyploidy Control in Epithelia. Cells, 2021, 10, 25.	1.8	6
15	The p53 family member p73 in the regulation of cell stress response. Biology Direct, 2021, 16, 23.	1.9	37
16	Dual Role of p73 in Cancer Microenvironment and DNA Damage Response. Cells, 2021, 10, 3516.	1.8	12
17	Attenuation of p53 mutant as an approach for treatment Her2-positive cancer. Cell Death Discovery, 2020, 6, 100.	2.0	17
18	The Role of ERBB2/HER2 Tyrosine Kinase Receptor in the Regulation of Cell Death. Biochemistry (Moscow), 2020, 85, 1277-1287.	0.7	4

NICKOLAI A BARLEV

#	Article	IF	CITATIONS
19	Activating Effect of 3â€Benzylidene Oxindoles on AMPK: From Computer Simulation to Highâ€Content Screening. ChemMedChem, 2020, 15, 2521-2529.	1.6	9
20	SEMG1/2 augment energy metabolism of tumor cells. Cell Death and Disease, 2020, 11, 1047.	2.7	11
21	KMT Set7/9 is a new regulator of Sam68 STAR-protein. Biochemical and Biophysical Research Communications, 2020, 525, 1018-1024.	1.0	12
22	Effects of Mycoplasmas on the Host Cell Signaling Pathways. Pathogens, 2020, 9, 308.	1.2	16
23	Sea Urchin as a Universal Model for Studies of Gene Networks. Frontiers in Genetics, 2020, 11, 627259.	1.1	15
24	Effects of mycoplasma infection on the host organism response via p53/NFâ€₽B signaling. Journal of Cellular Physiology, 2019, 234, 171-180.	2.0	16
25	Lysine-specific post-translational modifications of proteins in the life cycle of viruses. Cell Cycle, 2019, 18, 1995-2005.	1.3	12
26	Role of ACTN4 in Tumorigenesis, Metastasis, and EMT. Cells, 2019, 8, 1427.	1.8	43
27	Autophagy suppresses the pathogenic immune response to dietary antigens in cystic fibrosis. Cell Death and Disease, 2019, 10, 258.	2.7	17
28	Aldo-keto reductases protect metastatic melanoma from ER stress-independent ferroptosis. Cell Death and Disease, 2019, 10, 902.	2.7	99
29	EMT: A mechanism for escape from EGFR-targeted therapy in lung cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 29-39.	3.3	137
30	Orphan receptor NR4A3 is a novel target of p53 that contributes to apoptosis. Oncogene, 2019, 38, 2108-2122.	2.6	35
31	Co-expression of RelA/p65 and ACTN4 induces apoptosis in non-small lung carcinoma cells. Cell Cycle, 2018, 17, 01-21.	1.3	18
32	Non-alcoholic fatty liver disease severity is modulated by transglutaminase type 2. Cell Death and Disease, 2018, 9, 257.	2.7	21
33	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
34	Nutlin sensitizes lung carcinoma cells to interferon-alpha treatment in MDM2-dependent but p53-independent manner. Biochemical and Biophysical Research Communications, 2018, 495, 1233-1239.	1.0	13
35	Isatin-Schiff base-copper (II) complex induces cell death in p53-positive tumors. Cell Death Discovery, 2018, 4, 103.	2.0	41
36	BTK: a two-faced effector in cancer and tumour suppression. Cell Death and Disease, 2018, 9, 1064.	2.7	28

Nickolai A Barlev

#	Article	IF	CITATIONS
37	The biological basis and clinical symptoms of CAR-T therapy-associated toxicites. Cell Death and Disease, 2018, 9, 897.	2.7	90
38	Ca ²⁺ â€depended signaling pathways regulate selfâ€renewal and pluripotency of stem cells. Cell Biology International, 2018, 42, 1086-1096.	1.4	12
39	Specific Drug Delivery to Cancer Cells with Double-Imprinted Nanoparticles against Epidermal Growth Factor Receptor. Nano Letters, 2018, 18, 4641-4646.	4.5	128
40	Combined treatment of human multiple myeloma cells with bortezomib and doxorubicin alters the interactome of 20S proteasomes. Cell Cycle, 2018, 17, 1745-1756.	1.3	9
41	TG2 regulates the heatâ€shock response by the postâ€translational modification of HSF1. EMBO Reports, 2018, 19, .	2.0	35
42	Novel isatin-derived molecules activate p53 via interference with Mdm2 to promote apoptosis. Cell Cycle, 2018, 17, 1917-1930.	1.3	21
43	Proapoptotic modification of substituted isoindolinones as MDM2-p53 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 5197-5202.	1.0	20
44	Extracellular Proteasomes Are Deficient in 19S Subunits as Revealed by iTRAQ Quantitative Proteomics. Journal of Cellular Physiology, 2017, 232, 842-851.	2.0	23
45	One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy. Oncotarget, 2017, 8, 23955-23977.	0.8	107
46	BTK blocks the inhibitory effects of MDM2 on p53 activity. Oncotarget, 2017, 8, 106639-106647.	0.8	25
47	BTK Modulates p53 Activity to Enhance Apoptotic and Senescent Responses. Cancer Research, 2016, 76, 5405-5414.	0.4	50
48	Regulation of Endoribonuclease Activity of Alpha-Type Proteasome Subunits in Proerythroleukemia K562 Upon Hemin-Induced Differentiation. Protein Journal, 2016, 35, 17-23.	0.7	5
49	E3 ubiquitin ligase Pirh2 enhances tumorigenic properties of human non-small cell lung carcinoma cells. Genes and Cancer, 2016, 7, 383-393.	0.6	25
50	TAp73 transcriptionally represses BNIP3 expression. Cell Cycle, 2015, 14, 2484-2493.	1.3	14
51	Simultaneous EGFP and Tag Labeling of the β7 Subunit for Live Imaging and Affinity Purification of Functional Human Proteasomes. Molecular Biotechnology, 2015, 57, 36-44.	1.3	12
52	KMT Set7/9 affects genotoxic stress response via the Mdm2 axis. Oncotarget, 2015, 6, 25843-25855.	0.8	44
53	The 26S proteasome is a multifaceted target for anti-cancer therapies. Oncotarget, 2015, 6, 24733-24749.	0.8	69
54	Current Genome Editing Tools in Gene Therapy: New Approaches to Treat Cancer. Current Gene Therapy, 2015, 15, 511-529.	0.9	25

NICKOLAI A BARLEV

#	Article	IF	CITATIONS
55	Immunoaffinity purification of the functional 20S proteasome from human cells via transient overexpression of specific proteasome subunits. Protein Expression and Purification, 2014, 97, 37-43.	0.6	5
56	DNA damage modulates interactions between microRNAs and the 26S proteasome. Oncotarget, 2014, 5, 3555-3567.	0.8	25
57	Hot and toxic: Hyperthermia and anti-mitotic drugs in cancer therapy. Cell Cycle, 2013, 12, 2533-2533.	1.3	2
58	DNA damage-induced ubiquitylation of proteasome controls its proteolytic activity. Oncotarget, 2013, 4, 1338-1348.	0.8	52
59	Lysine-specific modifications of p53: a matter of life and death?. Oncotarget, 2013, 4, 1556-1571.	0.8	77
60	Proteomic analysis of the 20S proteasome (PSMA3)-interacting proteins reveals a functional link between the proteasome and mRNA metabolism. Biochemical and Biophysical Research Communications, 2011, 416, 258-265.	1.0	45
61	26S proteasome exhibits endoribonuclease activity controlled by extra-cellular stimuli. Cell Cycle, 2010, 9, 840-849.	1.3	37
62	Proteomic analysis of ACTN4-interacting proteins reveals it's a putative involvement in mRNA metabolism. Biochemical and Biophysical Research Communications, 2010, 397, 192-196.	1.0	16
63	Role of proteasomes in transcription and their regulation by covalent modifications. Frontiers in Bioscience - Landmark, 2008, Volume, 7184.	3.0	34
64	Methylation-Acetylation Interplay Activates p53 in Response to DNA Damage. Molecular and Cellular Biology, 2007, 27, 6756-6769.	1.1	168
65	Regulation of p53 activity through lysine methylation. Nature, 2004, 432, 353-360.	13.7	706
66	A Novel Human Ada2 Homologue Functions with Gcn5 or Brg1 To Coactivate Transcription. Molecular and Cellular Biology, 2003, 23, 6944-6957.	1.1	59
67	Activating Signal Cointegrator 2 Belongs to a Novel Steady-State Complex That Contains a Subset of Trithorax Group Proteins. Molecular and Cellular Biology, 2003, 23, 140-149.	1.1	202
68	Acetylation of p53 Activates Transcription through Recruitment of Coactivators/Histone Acetyltransferases. Molecular Cell, 2001, 8, 1243-1254.	4.5	649
69	Crystal Structure of Yeast Esa1 Suggests a Unified Mechanism for Catalysis and Substrate Binding by Histone Acetyltransferases. Molecular Cell, 2000, 6, 1195-1205.	4.5	151
70	Analysis of activity and regulation of hGcn5, a human histone acetyltransferase. Methods in Enzymology, 1999, 304, 696-715.	0.4	1
71	Repression of GCN5 Histone Acetyltransferase Activity via Bromodomain-Mediated Binding and Phosphorylation by the Ku–DNA-Dependent Protein Kinase Complex. Molecular and Cellular Biology, 1998, 18, 1349-1358.	1.1	117
72	Characterization of Physical Interactions of the Putative Transcriptional Adaptor, ADA2, with Acidic Activation Domains and TATA-binding Protein. Journal of Biological Chemistry, 1995, 270, 19337-19344.	1.6	174

#	Article	IF	CITATIONS
73	Opposing Roles of Wild-type and Mutant p53 in the Process of Epithelial to Mesenchymal Transition. Frontiers in Molecular Biosciences, 0, 9, .	1.6	15