Won-June Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10094749/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of UV/Ozone Treatment on Threshold Voltage Modulation in Sol–Gel IGZO Thinâ€Film Transistors. Advanced Materials Interfaces, 2022, 9, .	3.7	12
2	Rapid and Reliable Formation of Highly Densified Bilayer Oxide Dielectrics on Silicon Substrates via DUV Photoactivation for Low-Voltage Solution-Processed Oxide Thin-Film Transistors. ACS Applied Materials & Interfaces, 2021, 13, 2820-2828.	8.0	8
3	Low-Temperature Growth of Ferroelectric Hf _{0.5} Zr _{0.5} O ₂ Thin Films Assisted by Deep Ultraviolet Light Irradiation. ACS Applied Electronic Materials, 2021, 3, 1244-1251.	4.3	16
4	Solution-processed metal oxide dielectric films: Progress and outlook. APL Materials, 2021, 9, .	5.1	5
5	Large-area printed low-voltage organic thin film transistors <i>via</i> minimal-solution bar-coating. Journal of Materials Chemistry C, 2020, 8, 15112-15118.	5.5	14
6	Transition Metal Dichalcogenides: Atomic Vacancy Control and Elemental Substitution in a Monolayer Molybdenum Disulfide for High Performance Optoelectronic Device Arrays (Adv. Funct.) Tj ETQq0 0 C) rg B4ī.∳ Ov€	erlæck 10 Tf 50
7	Atomic Vacancy Control and Elemental Substitution in a Monolayer Molybdenum Disulfide for High Performance Optoelectronic Device Arrays. Advanced Functional Materials, 2020, 30, 1908147.	14.9	50
8	In Situ Tracking of Low-Temperature VO2 Crystallization via Photocombustion and Characterization of Phase-Transition Reliability on Large-Area Flexible Substrates. Chemistry of Materials, 2020, 32, 4013-4023.	6.7	9
9	High-performance, polymer-based direct cellular interfaces for electrical stimulation and recording. NPG Asia Materials, 2018, 10, 255-265.	7.9	65
10	Plasmonic Silver Nanoparticle-Impregnated Nanocomposite BiVO ₄ Photoanode for Plasmon-Enhanced Photocatalytic Water Splitting. Journal of Physical Chemistry C, 2018, 122, 7088-7093.	3.1	42
11	Influence of PEDOT:PSS crystallinity and composition on electrochemical transistor performance and long-term stability. Nature Communications, 2018, 9, 3858.	12.8	276
12	Sol-gel metal oxide dielectrics for all-solution-processed electronics. Materials Science and Engineering Reports, 2017, 114, 1-22.	31.8	180
13	Ultralow-Temperature Solution-Processed Aluminum Oxide Dielectrics via Local Structure Control of Nanoclusters. ACS Applied Materials & amp; Interfaces, 2017, 9, 35114-35124.	8.0	44
14	71-5: In-Depth Study on Large-Area Bar-Printing and Selective-Area Direct Patterning of Metal Oxide Dielectrics for High-Performance Transistor Application. Digest of Technical Papers SID International Symposium, 2016, 47, 966-969.	0.3	1
15	Sub-0.5 V Highly Stable Aqueous Salt Gated Metal Oxide Electronics. Scientific Reports, 2015, 5, 13088.	3.3	51
16	Largeâ€Scale Precise Printing of Ultrathin Sol–Gel Oxide Dielectrics for Directly Patterned Solutionâ€Processed Metal Oxide Transistor Arrays. Advanced Materials, 2015, 27, 5043-5048.	21.0	117
17	Direct patterning of sol–gel metal oxide semiconductor and dielectric films via selective surface wetting. RSC Advances, 2015, 5, 38125-38129.	3.6	40
18	Inâ€Đepth Studies on Rapid Photochemical Activation of Various Sol–Gel Metal Oxide Films for Flexible Transparent Electronics. Advanced Functional Materials, 2015, 25, 2807-2815.	14.9	172

#	Article	IF	CITATIONS
19	Low-Voltage Flexible Organic Electronics Based on High-Performance Sol–Gel Titanium Dioxide Dielectric. ACS Applied Materials & Interfaces, 2015, 7, 7456-7461.	8.0	54