
## Douwe Molenaar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1009135/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Complete genome sequence of <i>Lactobacillus plantarum</i> WCFS1. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1990-1995.                                                                               | 7.1 | 1,326     |
| 2  | Shifts in growth strategies reflect tradeoffs in cellular economics. Molecular Systems Biology, 2009, 5, 323.                                                                                                                                          | 7.2 | 535       |
| 3  | Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of<br>universally conserved phylotypes in the abundant microbiota of young and elderly adults.<br>Environmental Microbiology, 2009, 11, 1736-1751. | 3.8 | 420       |
| 4  | A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Applied Microbiology and Biotechnology, 1999, 52, 541-545.                                                   | 3.6 | 406       |
| 5  | Biodiversity-Based Identification and Functional Characterization of the Mannose-Specific Adhesin of <i>Lactobacillus plantarum </i> . Journal of Bacteriology, 2005, 187, 6128-6136.                                                                  | 2.2 | 272       |
| 6  | Phenotypic and genomic diversity of <i>Lactobacillus plantarum</i> strains isolated from various environmental niches. Environmental Microbiology, 2010, 12, 758-773.                                                                                  | 3.8 | 262       |
| 7  | Analysis of Growth of Lactobacillus plantarum WCFS1 on a Complex Medium Using a Genome-scale<br>Metabolic Model. Journal of Biological Chemistry, 2006, 281, 40041-40048.                                                                              | 3.4 | 261       |
| 8  | The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of<br>microorganisms. Proceedings of the National Academy of Sciences of the United States of America,<br>2007, 104, 18217-18222.                       | 7.1 | 255       |
| 9  | Exploring Lactobacillus plantarum Genome Diversity by Using Microarrays. Journal of Bacteriology, 2005, 187, 6119-6127.                                                                                                                                | 2.2 | 229       |
| 10 | Finding Functional Differences Between Species in a Microbial Community: Case Studies in Wine Fermentation and Kefir Culture. Frontiers in Microbiology, 2019, 10, 1347.                                                                               | 3.5 | 229       |
| 11 | Generation of a proton motive force by histidine decarboxylation and electrogenic<br>histidine/histamine antiport in Lactobacillus buchneri. Journal of Bacteriology, 1993, 175, 2864-2870.                                                            | 2.2 | 218       |
| 12 | Identification of Prebiotic Fructooligosaccharide Metabolism in Lactobacillus plantarum WCFS1 through Microarrays. Applied and Environmental Microbiology, 2007, 73, 1753-1765.                                                                        | 3.1 | 210       |
| 13 | <b>An alternative P<sub>II</sub> protein in the regulation of glutamine synthetase in <i>Escherichia coli</i></b> . Molecular Microbiology, 1996, 21, 133-146.                                                                                         | 2.5 | 205       |
| 14 | Mixed-Culture Transcriptome Analysis Reveals the Molecular Basis of Mixed-Culture Growth in<br><i>Streptococcus thermophilus</i> and <i>Lactobacillus bulgaricus</i> . Applied and Environmental<br>Microbiology, 2010, 76, 7775-7784.                 | 3.1 | 194       |
| 15 | How fastâ€growing bacteria robustly tune their ribosome concentration to approximate growthâ€rate maximization. FEBS Journal, 2015, 282, 2029-2044.                                                                                                    | 4.7 | 185       |
| 16 | Availability of public goods shapes the evolution of competing metabolic strategies. Proceedings of the United States of America, 2013, 110, 14302-14307.                                                                                              | 7.1 | 169       |
| 17 | Identification of Lactobacillus plantarum genes modulating the cytokine response of human peripheral blood mononuclear cells. BMC Microbiology, 2010, 10, 293.                                                                                         | 3.3 | 162       |
| 18 | Microbial domestication signatures of <i>Lactococcus lactis</i> can be reproduced by experimental evolution. Genome Research, 2012, 22, 115-124.                                                                                                       | 5.5 | 154       |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Malolactic fermentation: electrogenic malate uptake and malate/lactate antiport generate metabolic<br>energy. Journal of Bacteriology, 1991, 173, 6030-6037.                                                            | 2.2 | 153       |
| 20 | A systematic assessment of current genome-scale metabolic reconstruction tools. Genome Biology, 2019, 20, 158.                                                                                                          | 8.8 | 150       |
| 21 | Exploring Metabolic Pathway Reconstruction and Genome-Wide Expression Profiling in Lactobacillus reuteri to Define Functional Probiotic Features. PLoS ONE, 2011, 6, e18783.                                            | 2.5 | 147       |
| 22 | An agr -Like Two-Component Regulatory System in Lactobacillus plantarum Is Involved in Production of a Novel Cyclic Peptide and Regulation of Adherence. Journal of Bacteriology, 2005, 187, 5224-5235.                 | 2.2 | 144       |
| 23 | Glutathione Protects Lactococcus lactis against Oxidative Stress. Applied and Environmental Microbiology, 2003, 69, 5739-5745.                                                                                          | 3.1 | 139       |
| 24 | DNA micro-array-based identification of bile-responsive genes in Lactobacillus plantarum. Journal of Applied Microbiology, 2006, 100, 728-738.                                                                          | 3.1 | 139       |
| 25 | Functions of the Membrane-Associated and Cytoplasmic Malate Dehydrogenases in the Citric Acid<br>Cycle of <i>Corynebacterium glutamicum</i> . Journal of Bacteriology, 2000, 182, 6884-6891.                            | 2.2 | 121       |
| 26 | Continuous measurement of the cytoplasmic pH in Lactococcus lactis with a fluorescent pH indicator. Biochimica Et Biophysica Acta - General Subjects, 1991, 1115, 75-83.                                                | 2.4 | 113       |
| 27 | Genome-Scale Genotype-Phenotype Matching of Two <i>Lactococcus lactis</i> Isolates from Plants<br>Identifies Mechanisms of Adaptation to the Plant Niche. Applied and Environmental Microbiology,<br>2008, 74, 424-436. | 3.1 | 112       |
| 28 | DNA supercoiling depends on the phosphorylation potential in Escherichia coli. Molecular<br>Microbiology, 1996, 20, 351-360.                                                                                            | 2.5 | 111       |
| 29 | Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1. Microbial Cell Factories, 2007, 6, 29.                                                                         | 4.0 | 110       |
| 30 | Proton motive force-driven and ATP-dependent drug extrusion systems in multidrug-resistant<br>Lactococcus lactis. Journal of Bacteriology, 1994, 176, 6957-6964.                                                        | 2.2 | 108       |
| 31 | Complete Genome Sequence of <i>Lactococcus lactis</i> subsp. <i>lactis</i> KF147, a Plant-Associated<br>Lactic Acid Bacterium. Journal of Bacteriology, 2010, 192, 2649-2650.                                           | 2.2 | 105       |
| 32 | Biochemical and genetic characterization of the membraneâ€associated malate dehydrogenase<br>(acceptor) from <i>Corynebacterium glutamicum</i> . FEBS Journal, 1998, 254, 395-403.                                      | 0.2 | 101       |
| 33 | Lifestyle of <i>Lactobacillus plantarum</i> in the mouse caecum. Environmental Microbiology, 2009, 11, 2747-2757.                                                                                                       | 3.8 | 99        |
| 34 | Characteristics and osmoregulatory roles of uptake systems for proline and glycine betaine in Lactococcus lactis. Journal of Bacteriology, 1993, 175, 5438-5444.                                                        | 2.2 | 98        |
| 35 | Functions of the Membrane-Associated and Cytoplasmic Malate Dehydrogenases in the Citric Acid<br>Cycle of <i>Escherichia coli</i> . Journal of Bacteriology, 2000, 182, 6892-6899.                                      | 2.2 | 97        |
| 36 | Natural diversity and adaptive responses of Lactococcus lactis. Current Opinion in Biotechnology, 2006, 17, 183-190.                                                                                                    | 6.6 | 97        |

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Lactobacillus plantarum gene clusters encoding putative cell-surface protein complexes for<br>carbohydrate utilization are conserved in specific gram-positive bacteria. BMC Genomics, 2006, 7, 126.            | 2.8  | 96        |
| 38 | Convergence in probiotic <i>Lactobacillus</i> gut-adaptive responses in humans and mice. ISME<br>Journal, 2010, 4, 1481-1484.                                                                                   | 9.8  | 95        |
| 39 | The efflux of a fluorescent probe is catalyzed by an ATP-driven extrusion system in Lactococcus lactis.<br>Journal of Bacteriology, 1992, 174, 3118-3124.                                                       | 2.2  | 87        |
| 40 | Nark is a nitrite-extrusion system involved in anaerobic nitrate respiration by Escherichia coli.<br>Molecular Microbiology, 1994, 12, 579-586.                                                                 | 2.5  | 87        |
| 41 | Another Unusual Type of Citric Acid Cycle Enzyme inHelicobacter pylori: the Malate:Quinone<br>Oxidoreductase. Journal of Bacteriology, 2000, 182, 3204-3209.                                                    | 2.2  | 86        |
| 42 | The SOS response of Listeria monocytogenes is involved in stress resistance and mutagenesis.<br>Microbiology (United Kingdom), 2010, 156, 374-384.                                                              | 1.8  | 84        |
| 43 | Comparative genomics of human Lactobacillus crispatus isolates reveals genes for glycosylation and glycogen degradation: implications for in vivo dominance of the vaginal microbiota. Microbiome, 2019, 7, 49. | 11.1 | 84        |
| 44 | Genomeâ€scale diversity and niche adaptation analysis of <i>Lactococcus lactis</i> by comparative genome hybridization using multiâ€strain arrays. Microbial Biotechnology, 2011, 4, 383-402.                   | 4.2  | 76        |
| 45 | Genome Instability in Lactobacillus rhamnosus GG. Applied and Environmental Microbiology, 2013, 79, 2233-2239.                                                                                                  | 3.1  | 75        |
| 46 | A benzene-degrading nitrate-reducing microbial consortium displays aerobic and anaerobic benzene<br>degradation pathways. Scientific Reports, 2018, 8, 4490.                                                    | 3.3  | 74        |
| 47 | Genome-Wide Transposon Mutagenesis Indicates that Mycobacterium marinum Customizes Its<br>Virulence Mechanisms for Survival and Replication in Different Hosts. Infection and Immunity, 2015,<br>83, 1778-1788. | 2.2  | 72        |
| 48 | Macrophage ATP citrate lyase deficiency stabilizes atherosclerotic plaques. Nature Communications, 2020, 11, 6296.                                                                                              | 12.8 | 70        |
| 49 | Molecular assessment of bacterial vaginosis by Lactobacillus abundance and species diversity. BMC<br>Infectious Diseases, 2016, 16, 180.                                                                        | 2.9  | 68        |
| 50 | Visualization for genomics: the Microbial Genome Viewer. Bioinformatics, 2004, 20, 1812-1814.                                                                                                                   | 4.1  | 67        |
| 51 | Standardized Assay Medium To Measure Lactococcus lactis Enzyme Activities while Mimicking<br>Intracellular Conditions. Applied and Environmental Microbiology, 2012, 78, 134-143.                               | 3.1  | 66        |
| 52 | Systems biology of lactic acid bacteria: a critical review. Microbial Cell Factories, 2011, 10, S11.                                                                                                            | 4.0  | 64        |
| 53 | Metabolic shifts: a fitness perspective for microbial cell factories. Biotechnology Letters, 2012, 34, 2147-2160.                                                                                               | 2.2  | 61        |
| 54 | Amino acid analysis using chromatography–mass spectrometry: An inter platform comparison study.<br>Journal of Pharmaceutical and Biomedical Analysis, 2015, 114, 398-407.                                       | 2.8  | 60        |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Systems biology of lactic acid bacteria: For food and thought. Current Opinion in Systems Biology, 2017, 6, 7-13.                                                                                                                       | 2.6 | 60        |
| 56 | Vanishing white matter: deregulated integrated stress response as therapy target. Annals of Clinical and Translational Neurology, 2019, 6, 1407-1422.                                                                                   | 3.7 | 60        |
| 57 | An additional PllinEscherichia coli: a new regulatory protein in the glutamine synthetase cascade.<br>FEMS Microbiology Letters, 1995, 132, 153-157.                                                                                    | 1.8 | 57        |
| 58 | Protein costs do not explain evolution of metabolic strategies and regulation of ribosomal content:<br>does protein investment explain an anaerobic bacterial <scp>C</scp> rabtree effect?. Molecular<br>Microbiology, 2015, 97, 77-92. | 2.5 | 57        |
| 59 | Experimental evolution and the adjustment of metabolic strategies in lactic acid bacteria. FEMS<br>Microbiology Reviews, 2017, 41, S201-S219.                                                                                           | 8.6 | 57        |
| 60 | Identification of the σ B Regulon of Bacillus cereus and Conservation of σ B -Regulated Genes in Low-GC-Content Gram-Positive Bacteria. Journal of Bacteriology, 2007, 189, 4384-4390.                                                  | 2.2 | 53        |
| 61 | Naturally Fermented Milk From Northern Senegal: Bacterial Community Composition and Probiotic Enrichment With Lactobacillus rhamnosus. Frontiers in Microbiology, 2018, 9, 2218.                                                        | 3.5 | 50        |
| 62 | Improvement of <i>Lactobacillus plantarum</i> Aerobic Growth as Directed by Comprehensive<br>Transcriptome Analysis. Applied and Environmental Microbiology, 2008, 74, 4776-4778.                                                       | 3.1 | 49        |
| 63 | Searching for principles of microbial physiology. FEMS Microbiology Reviews, 2020, 44, 821-844.                                                                                                                                         | 8.6 | 49        |
| 64 | Defining control coefficients in non-ideal metabolic pathways. Biophysical Chemistry, 1995, 56, 215-226.                                                                                                                                | 2.8 | 47        |
| 65 | High local substrate availability stabilizes a cooperative trait. ISME Journal, 2011, 5, 929-932.                                                                                                                                       | 9.8 | 47        |
| 66 | AmtB-mediated NH <sub>3</sub> transport in prokaryotes must be active and as a consequence<br>regulation of transport by GlnK is mandatory to limit futile cycling of NH4+/NH3. FEBS Letters, 2011,<br>585, 23-28.                      | 2.8 | 47        |
| 67 | PhenoLink - a web-tool for linking phenotype to ~omics data for bacteria: application to gene-trait matching for Lactobacillus plantarum strains. BMC Genomics, 2012, 13, 170.                                                          | 2.8 | 46        |
| 68 | Proteome constraints reveal targets for improving microbial fitness in nutrientâ€rich environments.<br>Molecular Systems Biology, 2021, 17, e10093.                                                                                     | 7.2 | 46        |
| 69 | Using Lactococcus lactis for glutathione overproduction. Applied Microbiology and Biotechnology, 2005, 67, 83-90.                                                                                                                       | 3.6 | 45        |
| 70 | Trehalose degradation and glucose efflux precede cell ejection during germination of heat-resistant ascospores of Talaromyces macrosporus. Archives of Microbiology, 2002, 178, 1-7.                                                    | 2.2 | 43        |
| 71 | Volatile Compound Fingerprinting of Mixed-Culture Fermentations. Applied and Environmental Microbiology, 2011, 77, 6233-6239.                                                                                                           | 3.1 | 41        |
| 72 | How Biochemical Constraints of Cellular Growth Shape Evolutionary Adaptations in Metabolism.<br>Genetics, 2013, 194, 505-512.                                                                                                           | 2.9 | 40        |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Public goods and metabolic strategies. Current Opinion in Microbiology, 2016, 31, 109-115.                                                                                                                                                      | 5.1 | 39        |
| 74 | A high-throughput cheese manufacturing model for effective cheese starter culture screening.<br>Journal of Dairy Science, 2009, 92, 5868-5882.                                                                                                  | 3.4 | 38        |
| 75 | Functional identification in Lactobacillus reuteri of a PocR-like transcription factor regulating glycerol utilization and vitamin B12 synthesis. Microbial Cell Factories, 2011, 10, 55.                                                       | 4.0 | 38        |
| 76 | Mechanism and energetics of a citrate-transport system of Klebsiella pneumoniae. FEBS Journal, 1991,<br>195, 71-77.                                                                                                                             | 0.2 | 37        |
| 77 | Mechanism of Na(+)-dependent citrate transport in Klebsiella pneumoniae. Journal of Bacteriology,<br>1992, 174, 4893-4898.                                                                                                                      | 2.2 | 37        |
| 78 | Involvement of the Mannose Phosphotransferase System of <i>Lactobacillus plantarum</i> WCFS1 in Peroxide Stress Tolerance. Applied and Environmental Microbiology, 2010, 76, 3748-3752.                                                         | 3.1 | 37        |
| 79 | Expression of Plant Flavor Genes in Lactococcus lactis. Applied and Environmental Microbiology, 2007, 73, 1544-1552.                                                                                                                            | 3.1 | 36        |
| 80 | Transthyretin-Binding Activity of Complex Mixtures Representing the Composition of<br>Thyroid-Hormone Disrupting Contaminants in House Dust and Human Serum. Environmental Health<br>Perspectives, 2020, 128, 17015.                            | 6.0 | 36        |
| 81 | Functional ingredient production: application of global metabolic models. Current Opinion in<br>Biotechnology, 2005, 16, 190-197.                                                                                                               | 6.6 | 35        |
| 82 | Unity in organisation and regulation of catabolic operons in Lactobacillus plantarum, Lactococcus<br>lactis and Listeria monocytogenes. Systematic and Applied Microbiology, 2005, 28, 187-195.                                                 | 2.8 | 34        |
| 83 | Two Homologous Agr-Like Quorum-Sensing Systems Cooperatively Control Adherence, Cell<br>Morphology, and Cell Viability Properties in <i>Lactobacillus plantarum</i> WCFS1. Journal of<br>Bacteriology, 2008, 190, 7655-7665.                    | 2.2 | 34        |
| 84 | Characterization of protonmotive force generation in liposomes reconstituted from<br>phosphatidylethanolamine, reaction centers with light-harvesting complexes isolated from<br>Rhodopseudomonas palustris. Biochemistry, 1988, 27, 2014-2023. | 2.5 | 33        |
| 85 | Metabolic models for rational improvement of lactic acid bacteria as cell factories. Journal of<br>Applied Microbiology, 2005, 98, 1326-1331.                                                                                                   | 3.1 | 33        |
| 86 | Introducing glutathione biosynthetic capability into Lactococcus lactis subsp. cremoris NZ9000 improves the oxidative-stress resistance of the host. Metabolic Engineering, 2006, 8, 662-671.                                                   | 7.0 | 31        |
| 87 | Gene Expression Analysis Reveals a Gene Set Discriminatory to Different Metals in Soil. Toxicological<br>Sciences, 2010, 115, 34-40.                                                                                                            | 3.1 | 31        |
| 88 | Taxonomic and Functional Characterization of the Microbial Community During Spontaneous in vitro<br>Fermentation of Riesling Must. Frontiers in Microbiology, 2019, 10, 697.                                                                    | 3.5 | 30        |
| 89 | Light-driven amino acid uptake in Streptococcus cremoris or Clostridium acetobutylicum membrane<br>vesicles fused with liposomes containing bacterial reaction centers. Journal of Bacteriology, 1988,<br>170, 1820-1824.                       | 2.2 | 27        |
| 90 | PanCGH: a genotype-calling algorithm for pangenome CGH data. Bioinformatics, 2009, 25, 309-314.                                                                                                                                                 | 4.1 | 26        |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Effect of Amino Acid Availability on Vitamin B 12 Production in Lactobacillus reuteri. Applied and<br>Environmental Microbiology, 2009, 75, 3930-3936.                                                | 3.1 | 26        |
| 92  | Regulatory Phenotyping Reveals Important Diversity within the Species <i>Lactococcus lactis</i> .<br>Applied and Environmental Microbiology, 2009, 75, 5687-5694.                                     | 3.1 | 26        |
| 93  | Nonhierarchical Flux Regulation Exposes the Fitness Burden Associated with Lactate Production in <i>Synechocystis</i> sp. PCC6803. ACS Synthetic Biology, 2017, 6, 395-401.                           | 3.8 | 26        |
| 94  | σ 54-mediated control of the mannose phosphotransferase sytem in Lactobacillus plantarum impacts on carbohydrate metabolism. Microbiology (United Kingdom), 2010, 156, 695-707.                       | 1.8 | 24        |
| 95  | Binding proteins enhance specific uptake rate by increasing the substrate–transporter encounter rate. FEBS Journal, 2015, 282, 2394-2407.                                                             | 4.7 | 23        |
| 96  | Physiological responses to folate overproduction in Lactobacillus plantarum WCFS1. Microbial Cell<br>Factories, 2010, 9, 100.                                                                         | 4.0 | 19        |
| 97  | Adaption to glucose limitation is modulated by the pleotropic regulator CcpA, independent of selection pressure strength. BMC Evolutionary Biology, 2019, 19, 15.                                     | 3.2 | 19        |
| 98  | Microbial Communities in Sediments From Four Mildly Acidic Ephemeral Salt Lakes in the Yilgarn<br>Craton (Australia) – Terrestrial Analogs to Ancient Mars. Frontiers in Microbiology, 2019, 10, 779. | 3.5 | 15        |
| 99  | Steering microbiomes by organic amendments towards climate-smart agricultural soils. Biology and<br>Fertility of Soils, 2021, 57, 1053-1074.                                                          | 4.3 | 13        |
| 100 | Bioinformatics and Systems Biology: bridging the gap between heterogeneous student backgrounds.<br>Briefings in Bioinformatics, 2013, 14, 589-598.                                                    | 6.5 | 12        |
| 101 | High biodiversity in a benzene-degrading nitrate-reducing culture is sustained by a few primary consumers. Communications Biology, 2021, 4, 530.                                                      | 4.4 | 11        |
| 102 | An additional PII in Escherichia coli: a new regulatory protein in the glutamine synthetase cascade.<br>FEMS Microbiology Letters, 1995, 132, 153-157.                                                | 1.8 | 9         |
| 103 | The pivotal regulator GlnB of <i>Escherichia coli</i> is engaged in subtle and contextâ€dependent control. FEBS Journal, 2009, 276, 3324-3340.                                                        | 4.7 | 9         |
| 104 | Functional analysis of the role of CggR (central glycolytic gene regulator) in <i>Lactobacillus plantarum</i> by transcriptome analysis. Microbial Biotechnology, 2011, 4, 345-356.                   | 4.2 | 9         |
| 105 | Vesicle trafficking via the Spitzenkörper during hyphal tip growth in Rhizoctonia solani. Antonie Van<br>Leeuwenhoek, 2013, 103, 921-931.                                                             | 1.7 | 9         |
| 106 | New Insights Into Cinnamoyl Esterase Activity of Oenococcus oeni. Frontiers in Microbiology, 2019, 10, 2597.                                                                                          | 3.5 | 9         |
| 107 | Molecular biology for flux control. Biochemical Society Transactions, 1995, 23, 367-370.                                                                                                              | 3.4 | 7         |
| 108 | Genetic Elements Orchestrating Lactobacillus crispatus Glycogen Metabolism in the Vagina.<br>International Journal of Molecular Sciences, 2022, 23, 5590.                                             | 4.1 | 7         |

| #   | Article                                                                                                                                                         | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Crystal ball – 2009. Environmental Microbiology Reports, 2009, 1, 3-26.                                                                                         | 2.4  | 5         |
| 110 | Training for translation between disciplines: a philosophy for life and data sciences curricula.<br>Bioinformatics, 2018, 34, i4-i12.                           | 4.1  | 5         |
| 111 | Using Functional Annotations to Study Pairwise Interactions in Urinary Tract Infection Communities.<br>Genes, 2021, 12, 1221.                                   | 2.4  | 5         |
| 112 | Dichotomy in post-genomic microbiology. Nature Biotechnology, 2007, 25, 848-849.                                                                                | 17.5 | 4         |
| 113 | Large Intergenic Cruciform-Like Supermotifs in the Lactobacillus plantarum Genome. Journal of Bacteriology, 2009, 191, 3420-3423.                               | 2.2  | 4         |
| 114 | Functional Reconstitution of Photosynthetic Reaction Centre Complexes from Rhodopseudomonas Palustris. , 1989, , 352-361.                                       |      | 0         |
| 115 | Light Driven Amino Acid Uptake in Membrane Vesicles of Streptococcus Cremoris Fused with<br>Liposomes Containing Bacterial Reaction Centers. , 1989, , 291-295. |      | 0         |