Mi Xiong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1007956/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Research, 2014, 7, 704-716.	10.4	316
2	Porous TiO ₂ Nanotubes with Spatially Separated Platinum and CoO _x Cocatalysts Produced by Atomic Layer Deposition for Photocatalytic Hydrogen Production. Angewandte Chemie - International Edition, 2017, 56, 816-820.	13.8	293
3	Spillover in Heterogeneous Catalysis: New Insights and Opportunities. ACS Catalysis, 2021, 11, 3159-3172.	11.2	175
4	Design and Properties of Confined Nanocatalysts by Atomic Layer Deposition. Accounts of Chemical Research, 2017, 50, 2309-2316.	15.6	134
5	Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction. Nature Communications, 2019, 10, 4166.	12.8	132
6	Interfacial compatibility critically controls Ru/TiO2 metal-support interaction modes in CO2 hydrogenation. Nature Communications, 2022, 13, 327.	12.8	104
7	High Efficiency Cu-ZnO Hydrogenation Catalyst: The Tailoring of Cu-ZnO Interface Sites by Molecular Layer Deposition. ACS Catalysis, 2015, 5, 5567-5573.	11.2	99
8	Ni nanoparticles supported on CNTs with excellent activity produced by atomic layer deposition for hydrogen generation from the hydrolysis of ammonia borane. Catalysis Science and Technology, 2016, 6, 2112-2119.	4.1	98
9	Multiply Confined Nickel Nanocatalysts Produced by Atomic Layer Deposition for Hydrogenation Reactions. Angewandte Chemie - International Edition, 2015, 54, 9006-9010.	13.8	96
10	Highly dispersed Pt nanoparticles supported on carbon nanotubes produced by atomic layer deposition for hydrogen generation from hydrolysis of ammonia borane. Catalysis Science and Technology, 2017, 7, 322-329.	4.1	96
11	Highly Efficient Microwave Absorption of Magnetic Nanospindle–Conductive Polymer Hybrids by Molecular Layer Deposition. ACS Applied Materials & Interfaces, 2017, 9, 11116-11125.	8.0	91
12	A Tandem Catalyst with Multiple Metal Oxide Interfaces Produced by Atomic Layer Deposition. Angewandte Chemie - International Edition, 2016, 55, 7081-7085.	13.8	88
13	Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions. Nano Research, 2017, 10, 1595-1607.	10.4	82
14	In situ tuning of electronic structure of catalysts using controllable hydrogen spillover for enhanced selectivity. Nature Communications, 2020, 11, 4773.	12.8	81
15	Platinum Nanoparticle-Deposited Ti ₃ C ₂ T _{<i>x</i>} MXene for Hydrogen Evolution Reaction. Industrial & Engineering Chemistry Research, 2020, 59, 1822-1828.	3.7	79
16	Modulating Electronic Structure of an Auâ€Nanorodâ€Core–PdPtâ€Alloyâ€Shell Catalyst for Efficient Alcohol Electroâ€Oxidation. Advanced Energy Materials, 2021, 11, 2100812.	19.5	60
17	Atomic Carbon Layers Supported Pt Nanoparticles for Minimized CO Poisoning and Maximized Methanol Oxidation. Small, 2019, 15, e1902951.	10.0	47
18	Highly efficient CoO _x /SBA-15 catalysts prepared by atomic layer deposition for the epoxidation reaction of styrene. Catalysis Science and Technology, 2017, 7, 2032-2038.	4.1	45

Μι Χιοης

#	Article	IF	CITATIONS
19	Enhanced hydrogen generation by reverse spillover effects over bicomponent catalysts. Nature Communications, 2022, 13, 118.	12.8	44
20	Improved electrochemical performance of CoOx-NiO/Ti3C2Tx MXene nanocomposites by atomic layer deposition towards high capacitance supercapacitors. Journal of Alloys and Compounds, 2021, 862, 158546.	5.5	38
21	Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions. Chemistry - A European Journal, 2016, 22, 8438-8443.	3.3	31
22	Synthesis and catalytic activity of mesostructured KF/CaxAl2O(x+3) for the transesterification reaction to produce biodiesel. RSC Advances, 2012, 2, 12337.	3.6	28
23	Uniform and Conformal Carbon Nanofilms Produced Based on Molecular Layer Deposition. Materials, 2013, 6, 5602-5612.	2.9	24
24	A Tandem Catalyst with Multiple Metal Oxide Interfaces Produced by Atomic Layer Deposition. Angewandte Chemie, 2016, 128, 7197-7201.	2.0	22
25	Concurrently Achieving High Discharged Energy Density and Efficiency in Composites by Introducing Ultralow Loadings of Core–Shell Structured Graphene@TiO ₂ Nanoboxes. ACS Applied Materials & Interfaces, 2022, 14, 29292-29301.	8.0	17
26	Porous TiO 2 Nanotubes with Spatially Separated Platinum and CoO x Cocatalysts Produced by Atomic Layer Deposition for Photocatalytic Hydrogen Production. Angewandte Chemie, 2017, 129, 834-838.	2.0	16
27	Amphiphilic confined Pt-based nanocatalysts produced by atomic layer deposition with enhanced catalytic performance for biphasic reactions. Green Chemistry, 2021, 23, 8116-8123.	9.0	11
28	Engineering of platinum–oxygen vacancy interfacial sites in confined catalysts for enhanced hydrogenation selectivity. Catalysis Science and Technology, 2022, 12, 2411-2415.	4.1	4
29	Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions. Chemistry - A European Journal, 2016, 22, 8385-8385.	3.3	2