Jaume Bonet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/100747/publications.pdf

Version: 2024-02-01

331670 254184 2,310 45 21 43 citations h-index g-index papers 59 59 59 3973 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	RosettaSurfâ€"A surface-centric computational design approach. PLoS Computational Biology, 2022, 18, e1009178.	3.2	5
2	SPServer: split-statistical potentials for the analysis of protein structures and protein–protein interactions. BMC Bioinformatics, 2021, 22, 4.	2.6	8
3	Bottom-up de novo design of functional proteins with complex structural features. Nature Chemical Biology, 2021, 17, 492-500.	8.0	65
4	Modeling Immunity with Rosetta: Methods for Antibody and Antigen Design. Biochemistry, 2021, 60, 825-846.	2.5	24
5	On the use of direct-coupling analysis with a reduced alphabet of amino acids combined with super-secondary structure motifs for protein fold prediction. NAR Genomics and Bioinformatics, 2021, 3, lqab027.	3.2	0
6	On the prediction of DNA-binding preferences of C2H2-ZF domains using structural models: application on human CTCF. NAR Genomics and Bioinformatics, 2020, 2, Iqaa046.	3.2	6
7	Using collections of structural models to predict changes of binding affinity caused by mutations in proteinâ ϵ "protein interactions. Protein Science, 2020, 29, 2112-2130.	7.6	14
8	Preclinical development of a humanized chimeric antigen receptor against B cell maturation antigen for multiple myeloma. Haematologica, 2020, 106, 173-184.	3.5	25
9	Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nature Methods, 2020, 17, 665-680.	19.0	513
10	De novo protein design enables the precise induction of RSV-neutralizing antibodies. Science, 2020, 368, .	12.6	137
11	A computationally designed chimeric antigen receptor provides a small-molecule safety switch for T-cell therapy. Nature Biotechnology, 2020, 38, 426-432.	17.5	100
12	Human Albumin Impairs Amyloid \hat{l}^2 -peptide Fibrillation Through its C-terminus: From docking Modeling to Protection Against Neurotoxicity in Alzheimer's disease. Computational and Structural Biotechnology Journal, 2019, 17, 963-971.	4.1	19
13	rstoolbox - a Python library for large-scale analysis of computational protein design data and structural bioinformatics. BMC Bioinformatics, 2019, 20, 240.	2.6	15
14	Alternative interaction sites in the influenza A virus nucleoprotein mediate viral escape from the importinâ€Î±7 mediated nuclear import pathway. FEBS Journal, 2019, 286, 3374-3388.	4.7	4
15	Boosting subdominant neutralizing antibody responses with a computationally designed epitope-focused immunogen. PLoS Biology, 2019, 17, e3000164.	5.6	26
16	On the mechanisms of protein interactions: predicting their affinity from unbound tertiary structures. Bioinformatics, 2018, 34, 592-598.	4.1	12
17	ATTACK, a novel bispecific T cell-recruiting antibody with trivalent EGFR binding and monovalent CD3 binding for cancer immunotherapy. Oncolmmunology, 2018, 7, e1377874.	4.6	56
18	Rosetta FunFolDes – A general framework for the computational design of functional proteins. PLoS Computational Biology, 2018, 14, e1006623.	3.2	32

#	Article	IF	CITATIONS
19	Structure-based immunogen design $\hat{a}\in$ " leading the way to the new age of precision vaccines. Current Opinion in Structural Biology, 2018, 51, 163-169.	5.7	22
20	Bispecific light T-cell engagers for gene-based immunotherapy of epidermal growth factor receptor (EGFR)-positive malignancies. Cancer Immunology, Immunotherapy, 2018, 67, 1251-1260.	4.2	20
21	The antigen-binding fragment of human gamma immunoglobulin prevents amyloid \hat{l}^2 -peptide folding into \hat{l}^2 -sheet to form oligomers. Oncotarget, 2017, 8, 41154-41165.	1.8	7
22	InteractoMIX: a suite of computational tools to exploit interactomes in biological and clinical research. Biochemical Society Transactions, 2016, 44, 917-924.	3.4	3
23	Amyloid- \hat{l}^2 Peptide Nitrotyrosination Stabilizes Oligomers and Enhances NMDAR-Mediated Toxicity. Journal of Neuroscience, 2016, 36, 11693-11703.	3.6	50
24	Intramolecular trimerization, a novel strategy for making multispecific antibodies with controlled orientation of the antigen binding domains. Scientific Reports, 2016, 6, 28643.	3.3	26
25	Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis. Nature Communications, 2016, 7, 12460.	12.8	73
26	ADP-ribose–derived nuclear ATP synthesis by NUDIX5 is required for chromatin remodeling. Science, 2016, 352, 1221-1225.	12.6	141
27	Inferring causal molecular networks: empirical assessment through a community-based effort. Nature Methods, 2016, 13, 310-318.	19.0	209
28	Targeting Importin- $\hat{l}\pm7$ as a Therapeutic Approach against Pandemic Influenza Viruses. Journal of Virology, 2015, 89, 9010-9020.	3.4	20
29	Smotifs as structural local descriptors of supersecondary elements: classification, completeness and applications. Bio-Algorithms and Med-Systems, 2014, 10, 195-212.	2.4	2
30	ArchDB 2014: structural classification of loops in proteins. Nucleic Acids Research, 2014, 42, D315-D319.	14.5	38
31	On the Use of Knowledge-Based Potentials for the Evaluation of Models of Protein–Protein, Protein–DNA, and Protein–RNA Interactions. Advances in Protein Chemistry and Structural Biology, 2014, 94, 77-120.	2.3	32
32	Frag'r'Us: knowledge-based sampling of protein backbone conformations for <i>de novo</i> structure-based protein design. Bioinformatics, 2014, 30, 1935-1936.	4.1	15
33	Understanding Protein–Protein Interactions Using Local Structural Features. Journal of Molecular Biology, 2013, 425, 1210-1224.	4.2	46
34	iLoops: a protein–protein interaction prediction server based on structural features. Bioinformatics, 2013, 29, 2360-2362.	4.1	47
35	Elongation of the C-terminal domain of an anti-amyloid \hat{l}^2 single-chain variable fragment increases its thermodynamic stability and decreases its aggregation tendency. MAbs, 2013, 5, 678-689.	5.2	16
36	Generation and characterization of monospecific and bispecific hexavalent trimerbodies. MAbs, 2013, 5, 70-79.	5.2	30

#	Article	IF	Citations
37	CDK2-dependent activation of PARP-1 is required for hormonal gene regulation in breast cancer cells. Genes and Development, 2012, 26, 1972-1983.	5.9	107
38	Structural Bioinformatics of Proteins: Predicting the Tertiary and Quaternary Structure of Proteins from Sequence. , 2012, , .		1
39	Networks of ProteinProtein Interactions: From Uncertainty to Molecular Details. Molecular Informatics, 2012, 31, 342-362.	2.5	22
40	Prediction of a new class of RNA recognition motif. Journal of Molecular Modeling, 2011, 17, 1863-1875.	1.8	1
41	Multivalent antibodies: when design surpasses evolution. Trends in Biotechnology, 2010, 28, 355-362.	9.3	172
42	In Vivo Tumor Targeting and Imaging with Engineered Trivalent Antibody Fragments Containing Collagen-Derived Sequences. PLoS ONE, 2009, 4, e5381.	2.5	56
43	Characterization of Protein Hubs by Inferring Interacting Motifs from Protein Interactions. PLoS Computational Biology, 2007, 3, e178.	3.2	51
44	The role of residue stability in transient protein-protein interactions involved in enzymatic phosphate hydrolysis. A computational study. Proteins: Structure, Function and Bioinformatics, 2005, 63, 65-77.	2.6	13
45	Characterization of Protein Hubs by Inferring Interacting Motifs from Protein Interactions. PLoS Computational Biology, 2005, preprint, e178.	3.2	0