Xu-Lin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10073776/publications.pdf

Version: 2024-02-01

	126907	161849
3,178	33	54
citations	h-index	g-index
0.1	0.1	2056
91	91	3956
docs citations	times ranked	citing authors
	citations 91	3,178 33 citations h-index 91 91

#	Article	IF	CITATIONS
1	Highly polarized emission from organic single-crystal light-emitting devices with a polarization ratio of 176. Optica, 2022, 9, 121.	9.3	13
2	Non-Abelian braiding on photonic chips. Nature Photonics, 2022, 16, 390-395.	31.4	58
3	Exceptional point protected robust onâ€ehip optical logic gates. Exploration, 2022, 2, .	11.0	4
4	Encircling exceptional points in non-Hermitian systems with quasidegenerate energy levels. Physical Review A, 2022, 105, .	2.5	2
5	Capillary Force-Induced Printing of Stretchable and Mechanically Stable Silver Nanowire Electrodes With Highly Ordered Alignment For Ultra-Flexible Organic Light-Emitting Devices. IEEE Nanotechnology Magazine, 2021, 20, 99-103.	2.0	5
6	Recent progress in post treatment of silver nanowire electrodes for optoelectronic device applications. Nanoscale, 2021, 13, 12423-12437.	5.6	18
7	Highâ€Throughput Screening for Phaseâ€Change Memory Materials. Advanced Functional Materials, 2021, 31, 2009803.	14.9	43
8	Extremely sensitive multi-order mode refractive index sensor using TiO2 nanograss film and weakly bounded waveguide modes. Optics Express, 2021, 29, 13520.	3.4	2
9	Omnidirectional light absorption enhancement of perovskite solar cells by an antireflection film with holographic lithography microstructures. Optics Letters, 2021, 46, 4781.	3.3	2
10	Tunable surface plasmon-polariton resonance in organic light-emitting devices based on corrugated alloy electrodes. Opto-Electronic Advances, 2021, 4, 200024-200024.	13.3	23
11	General Rules Governing the Dynamical Encircling of an Arbitrary Number of Exceptional Points. Physical Review Letters, 2021, 127, 253901.	7.8	27
12	Highly transparent and flexible fabric-based organic light emitting devices for unnoticeable wearable displays. Organic Electronics, 2020, 76, 105494.	2.6	42
13	Rollerâ€Assisted Adhesion Imprinting for Highâ€Throughput Manufacturing of Wearable and Stretchable Organic Lightâ€Emitting Devices. Advanced Optical Materials, 2020, 8, 1901525.	7.3	20
14	Plasmonic ultrathin metal grid electrode induced optical outcoupling enhancement in flexible organic light-emitting device. Organic Electronics, 2020, 87, 105960.	2.6	9
15	Hamiltonian Hopping for Efficient Chiral Mode Switching in Encircling Exceptional Points. Physical Review Letters, 2020, 125, 187403.	7.8	44
16	Highly Flexible Fabricâ€Based Organic Lightâ€Emitting Devices for Conformal Wearable Displays. Advanced Materials Technologies, 2020, 5, 1900942.	5.8	20
17	In Situ Integration of SERS Sensors for Onâ€Chip Catalytic Reactions. Advanced Materials Technologies, 2020, 5, 1900963.	5.8	11
18	PFSA-passivated silver nanowire transparent electrodes for highly flexible organic-light-emitting devices with improved stability. Organic Electronics, 2020, 84, 105727.	2.6	10

#	Article	IF	Citations
19	Enhanced efficiency of organic light-emitting devices by using a directly imprinted nanopillared ultrathin metallic electrode. Optics Letters, 2020, 45, 4879.	3.3	6
20	Improved light extraction in all-inorganic perovskite light-emitting devices with periodic nanostructures by nanoimprinting lithography. Optics Letters, 2020, 45, 5156.	3.3	8
21	Highly transparent and conductive metal oxide/metal/polymer composite electrodes for high-efficiency flexible organic light-emitting devices. Nanophotonics, 2020, 9, 3567-3573.	6.0	8
22	Design of a non-Hermitian on-chip mode converter using phase change materials. Optics Letters, 2020, 45, 4630.	3.3	8
23	Plasmonicâ€Assisted Graphene Oxide Artificial Muscles. Advanced Materials, 2019, 31, e1806386.	21.0	134
24	Highly Flexible and Mechanically Robust Ultrathin Au Grid as Electrodes for Flexible Organic Light-Emitting Devices. IEEE Nanotechnology Magazine, 2019, 18, 776-780.	2.0	5
25	Directly Imprinted Periodic Corrugation on Ultrathin Metallic Electrode for Enhanced Light Extraction in Organic Light-Emitting Devices. IEEE Nanotechnology Magazine, 2019, 18, 1057-1062.	2.0	8
26	Dynamically encircling an exceptional point in anti-parity-time symmetric systems: asymmetric mode switching for symmetry-broken modes. Light: Science and Applications, 2019, 8, 88.	16.6	128
27	Dynamically encircling exceptional points in a three-mode waveguide system. Communications Physics, 2019, 2, .	5.3	47
28	Distinct outcomes by dynamically encircling an exceptional point along homotopic loops. Physical Review A, 2019, 99, .	2.5	12
29	Ultrathin Metal Films as the Transparent Electrode in ITOâ€Free Organic Optoelectronic Devices. Advanced Optical Materials, 2019, 7, 1800778.	7.3	133
30	Enhanced efficiency of all-inorganic perovskite light-emitting diodes by using F4-TCNQ-doped PTAA as a hole-transport layer. Optics Letters, 2019, 44, 4817.	3.3	6
31	Switching Terahertz Waves using Exceptional Points. Physical Review Applied, 2018, 10, .	3.8	9
32	Hybrid exceptional point and its dynamical encircling in a two-state system. Physical Review A, 2018, 98,	2.5	22
33	Direct laser scribing of AgNPs@RGO biochip as a reusable SERS sensor for DNA detection. Sensors and Actuators B: Chemical, 2018, 270, 500-507.	7.8	58
34	Mechanically robust stretchable organic optoelectronic devices built using a simple and universal stencil-pattern transferring technology. Light: Science and Applications, 2018, 7, 35.	16.6	77
35	Dynamically Encircling Exceptional Points: <i>InÂsitu</i> Control of Encircling Loops and the Role of the Starting Point. Physical Review X, 2018, 8, .	8.9	106
36	Highly Efficient Three Primary Color Organic Singleâ€Crystal Lightâ€Emitting Devices with Balanced Carrier Injection and Transport. Advanced Functional Materials, 2017, 27, 1604659.	14.9	69

3

#	Article	IF	CITATIONS
37	Exceptional points and symmetry recovery in a two-state system. Physical Review A, 2017, 96, .	2.5	11
38	Nanostructures induced light harvesting enhancement in organic photovoltaics. Nanophotonics, 2017, 7, 371-391.	6.0	32
39	An Ultrasensitive Long-Period Fiber Grating-Based Refractive Index Sensor with Long Wavelengths. Sensors, 2016, 16, 2205.	3.8	21
40	Enhanced efficiency of organic light-emitting devices with corrugated nanostructures based on soft nano-imprinting lithography. Applied Physics Letters, 2016, 109, .	3.3	22
41	Superhydrophobic SERS chip based on a Ag coated natural taro-leaf. Nanoscale, 2016, 8, 11487-11493.	5.6	82
42	Ultrathin and ultrasmooth Au films as transparent electrodes in ITO-free organic light-emitting devices. Nanoscale, 2016, 8, 10010-10015.	5.6	77
43	Enhanced transmittance of metallic film with nanoaperture array. Optical Engineering, 2016, 55, 097107.	1.0	0
44	As-grown graphene/copper nanoparticles hybrid nanostructures for enhanced intensity and stability of surface plasmon resonance. Scientific Reports, 2016, 6, 37190.	3.3	28
45	Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process. Nature Communications, 2016, 7, 11573.	12.8	182
46	Protein-Based Multi-Mode Interference Optical Micro-Splitters. IEEE Photonics Technology Letters, 2016, 28, 629-632.	2.5	4
47	Plasmon-Photon Coupled Modes Lasing in a Silver-Coated Hemisphere. IEEE Photonics Technology Letters, 2016, 28, 351-354.	2.5	1
48	Optical force on toroidal nanostructures: Toroidal dipole versus renormalized electric dipole. Physical Review A, 2015, 92, .	2.5	37
49	Non-uniform annular rings-based metasurfaces for high-efficient and polarization-independent focusing. Applied Physics Letters, 2015, 107, .	3.3	9
50	Intrinsic Polarization and Tunable Color of Electroluminescence from Organic Single Crystal-based Light-Emitting Devices. Scientific Reports, 2015, 5, 12445.	3.3	33
51	Gold nanorods-silica Janus nanoparticles for theranostics. Applied Physics Letters, 2015, 106, .	3.3	33
52	Surface Plasmon-Modulated Fluorescence on 2D Metallic Silver Gratings. IEEE Photonics Technology Letters, 2015, 27, 821-823.	2.5	9
53	Hybrid Tamm plasmon-polariton/microcavity modes for white top-emitting organic light-emitting devices. Optica, 2015, 2, 579.	9.3	45
54	Stability Improved Stretchable Metallic Gratings With Tunable Grating Period in Submicron Scale. Journal of Lightwave Technology, 2015, 33, 3327-3331.	4.6	14

#	Article	IF	Citations
55	Dual-periodic-corrugation-induced broadband light absorption enhancement in organic solar cells. Organic Electronics, 2015, 27, 167-172.	2.6	27
56	Unidirectional Lasing From a Spiral-Shaped Microcavity of Dye-Doped Polymers. IEEE Photonics Technology Letters, 2015, 27, 311-314.	2.5	21
57	Organic Crystals: Fabrication and Characterization of Organic Single Crystalâ€Based Lightâ€Emitting Devices with Improved Contact Between the Metallic Electrodes and Crystal (Adv. Funct. Mater.) Tj ETQq1 1 0.784	1 34. 9 rgBT	/ O verlock
58	Fabrication and Characterization of Organic Single Crystalâ€Based Lightâ€Emitting Devices with Improved Contact Between the Metallic Electrodes and Crystal. Advanced Functional Materials, 2014, 24, 7085-7092.	14.9	31
59	Strong coupling in hybrid plasmon-modulated nanostructured cavities. Applied Physics Letters, 2014, 105, 191117.	3.3	13
60	First-principles calculations of a robust two-dimensional boron honeycomb sandwiching a triangular molybdenum layer. Physical Review B, 2014, 90, .	3.2	70
61	Eliminating Angular Dispersion in Microcavity by Employing Metamaterials With Hyperbolic Dispersion as Reflectors. IEEE Journal of Quantum Electronics, 2014, 50, 348-353.	1.9	1
62	Surface-Plasmon-Mediated Programmable Optical Nanofabrication of an Oriented Silver Nanoplate. ACS Nano, 2014, 8, 6682-6692.	14.6	49
63	Improved detecting sensitivity of long period fiber gratings by polyelectrolyte multilayers: The effect of film structures. Optics Communications, 2014, 331, 39-44.	2.1	11
64	Surface Plasmon-Polariton Mediated Red Emission from Organic Light-Emitting Devices Based on Metallic Electrodes Integrated with Dual-Periodic Corrugation. Scientific Reports, 2014, 4, 7108.	3.3	35
65	Light trapping schemes in organic solar cells: A comparison between optical Tamm states and Fabry–Pérot cavity modes. Organic Electronics, 2013, 14, 1577-1585.	2.6	23
66	Matching Photocurrents of Subâ€eells in Doubleâ€Junction Organic Solar Cells via Coupling Between Surface Plasmon Polaritons and Microcavity Modes. Advanced Optical Materials, 2013, 1, 809-813.	7.3	40
67	Anti-reflection resonance in distributed Bragg reflectors-based ultrathin highly absorbing dielectric and its application in solar cells. Applied Physics Letters, 2013, 102, .	3.3	33
68	Silver nano islands enhanced Raman scattering on large area grating substrates fabricated by two beam laser interference. Chemical Research in Chinese Universities, 2013, 29, 1006-1010.	2.6	7
69	Broadband Light Extraction from White Organic Lightâ€Emitting Devices by Employing Corrugated Metallic Electrodes with Dual Periodicity. Advanced Materials, 2013, 25, 6969-6974.	21.0	85
70	Strongly Localized Evanescent Optical Tamm States at Metal-DBR Interface. Journal of Lightwave Technology, 2013, 31, 1654-1659.	4.6	10
71	Viewing-angle independence of white emission from microcavity top-emitting organic light-emitting devices with periodically and gradually changed cavity length. Organic Electronics, 2013, 14, 1597-1601.	2.6	16
72	Lowered threshold of polymer distributed feedback laser by hybridizing waveguide and surface-plasmon polariton modes. Optics and Laser Technology, 2013, 45, 246-249.	4.6	1

#	Article	IF	CITATIONS
73	Time-Resolved Fluorescence Anisotropy of Surface Plasmon Coupled Emission on Metallic Gratings. Journal of Physical Chemistry C, 2013, 117, 26734-26739.	3.1	13
74	Spectral engineering by flexible tunings of optical Tamm states and Fabry–Perot cavity resonance. Optics Letters, 2013, 38, 4382.	3.3	28
75	Silverâ€Coated Rose Petal: Green, Facile, Lowâ€Cost and Sustainable Fabrication of a SERS Substrate with Unique Superhydrophobicity and High Efficiency. Advanced Optical Materials, 2013, 1, 56-60.	7.3	102
76	Optical Tamm states enhanced broad-band absorption of organic solar cells. Applied Physics Letters, 2012, 101, .	3.3	106
77	FDTD Study on the Invisibility Performance of Two-Dimensional Cylindrical Cloak With Off-Plane Incidence. Journal of Lightwave Technology, 2012, 30, 1835-1842.	4.6	7
78	Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode. Applied Physics Letters, 2012, 101, .	3.3	53
79	Flexible lasers based on the microstructured single-crystalline ultrathin films. Journal of Materials Chemistry, 2012, 22, 24139.	6.7	24
80	Compact Long-Period Fiber Gratings With Resonance at Second-Order Diffraction. IEEE Photonics Technology Letters, 2012, 24, 1393-1395.	2.5	39
81	Nanoporous TiO ₂ /Polyion Thin-Film-Coated Long-Period Grating Sensors for the Direct Measurement of Low-Molecular-Weight Analytes. Langmuir, 2012, 28, 8814-8821.	3.5	24
82	Distributed feedback lasing from thin organic crystal based on active waveguide grating structures. Organic Electronics, 2012, 13, 1602-1605.	2.6	13
83	S-Tapered Fiber Sensors for Highly Sensitive Measurement of Refractive Index and Axial Strain. Journal of Lightwave Technology, 2012, 30, 3126-3132.	4.6	86
84	Distributed Feedback Lasers Based on Thiophene/Phenylene Coâ€Oligomer Single Crystals. Advanced Functional Materials, 2012, 22, 33-38.	14.9	81
85	Organic Single Crystalline Lasers: Distributed Feedback Lasers Based on Thiophene/Phenylene Co-Oligomer Single Crystals (Adv. Funct. Mater. 1/2012). Advanced Functional Materials, 2012, 22, 32-32.	14.9	1
86	Solving Efficiency–Stability Tradeoff in Topâ€Emitting Organic Lightâ€Emitting Devices by Employing Periodically Corrugated Metallic Cathode. Advanced Materials, 2012, 24, 1187-1191.	21.0	96
87	Grating amplitude effect on electroluminescence enhancement of corrugated organic light-emitting devices. Optics Letters, 2011, 36, 3915.	3.3	44
88	A SERSâ€active microfluidic device with tunable surface plasmon resonances. Electrophoresis, 2011, 32, 3378-3384.	2.4	53
89	Study of Electronâ^Phonon Coupling Dynamics in Au Nanorods by Transient Depolarization Measurements. Journal of Physical Chemistry C, 2010, 114, 2913-2917.	3.1	35