
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10062350/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microwires coated by glass: A new family of soft and hard magnetic materials. Journal of Materials Research, 2000, 15, 2107-2113.	2.6	112
2	Trends in optimization of giant magnetoimpedance effect in amorphous and nanocrystalline materials. Journal of Alloys and Compounds, 2017, 727, 887-901.	5.5	81
3	Manipulation of domain wall dynamics in amorphous microwires through the magnetoelastic anisotropy. Nanoscale Research Letters, 2012, 7, 223.	5.7	75
4	Magnetoelastic sensor based on GMI of amorphous microwire. Sensors and Actuators A: Physical, 2001, 91, 95-98.	4.1	70
5	Tailoring of magnetic properties and GMI effect of Co-rich amorphous microwires by heat treatment. Journal of Alloys and Compounds, 2014, 615, 610-615.	5.5	70
6	Tailoring of magnetic properties of glass-coated microwires by current annealing. Journal of Non-Crystalline Solids, 2001, 287, 31-36.	3.1	69
7	Induced magnetic anisotropy in Co–Mn–Si–B amorphous microwires. Journal of Applied Physics, 2000, 87, 1402-1409.	2.5	67
8	Manipulation of magnetic properties of glass-coated microwires by annealing. Journal of Magnetism and Magnetic Materials, 2015, 383, 232-236.	2.3	67
9	Ferromagnetic resonance, magnetic behaviour and structure of Fe-based glass-coated microwires. Journal of Magnetism and Magnetic Materials, 1999, 203, 238-240.	2.3	66
10	Correlation between magnetic and mechanical properties of devitrified glass-coated Fe71.8Cu1Nb3.1Si15B9.1 microwires. Journal of Magnetism and Magnetic Materials, 2002, 249, 79-84.	2.3	66
11	Recent research on magnetic properties of glass-coated microwires. Journal of Magnetism and Magnetic Materials, 2005, 294, 182-192.	2.3	66
12	Effect of transverse magnetic field on domain wall propagation in magnetically bistable glass-coated amorphous microwires. Journal of Applied Physics, 2009, 106, .	2.5	65
13	Torsional stress impedance and magneto-impedance in (Co0.95Fe0.05)72.5Si12.5B15amorphous wire with helical induced anisotropy. Journal Physics D: Applied Physics, 1999, 32, 3140-3145.	2.8	64
14	Physical properties of nearly zero magnetostriction Co-rich glass-coated amorphous microwires. Journal of Materials Research, 1999, 14, 3775-3783.	2.6	64
15	Correlation of Crystalline Structure with Magnetic and Transport Properties of Glass-Coated Microwires. Crystals, 2017, 7, 41.	2.2	64
16	Giant magnetoimpedance in rapidly quenched materials. Journal of Alloys and Compounds, 2020, 814, 152225.	5.5	59
17	Effect of AC driving current on magneto-impedance effect. Sensors and Actuators A: Physical, 2000, 81, 86-90.	4.1	54
18	Torsion dependence of the magnetization process in magnetostrictive amorphous wire. Journal of Magnetism and Magnetic Materials, 1991, 96, 321-328.	2.3	53

JUAN MARIA BLANCO

#	Article	IF	CITATIONS
19	Asymmetric torsion stress giant magnetoimpedance in nearly zero magnetostrictive amorphous wires. Journal of Applied Physics, 2000, 87, 4813-4815.	2.5	51
20	Soft magnetic microwires for sensor applications. Journal of Magnetism and Magnetic Materials, 2020, 498, 166180.	2.3	49
21	The stress dependence of the switching field in glass-coated amorphous microwires. Journal Physics D: Applied Physics, 1998, 31, 3040-3045.	2.8	47
22	Engineering of magnetic properties of Co-rich microwires by joule heating. Intermetallics, 2019, 105, 92-98.	3.9	45
23	Smart composites with embedded magnetic microwire inclusions allowing non-contact stresses and temperature monitoring. Composites Part A: Applied Science and Manufacturing, 2019, 120, 12-20.	7.6	44
24	Grading the magnetic anisotropy and engineering the domain wall dynamics in Fe-rich microwires by stress-annealing. Acta Materialia, 2018, 155, 279-285.	7.9	43
25	Interaction between Fe-rich ferromagnetic glass-coated microwires. Journal of Magnetism and Magnetic Materials, 2002, 249, 99-103.	2.3	41
26	Switching field fluctuations in a glass-coated Fe-rich amorphous microwire. Journal of Magnetism and Magnetic Materials, 2002, 249, 131-135.	2.3	41
27	Recent advances in studies of magnetically soft amorphous microwires. Journal of Magnetism and Magnetic Materials, 2009, 321, 822-825.	2.3	41
28	Effect of stress annealing on magnetic properties and GMI effect of Co- and Fe-rich microwires. Journal of Alloys and Compounds, 2017, 707, 189-194.	5.5	41
29	Coercivity of glass-coated Fe73.4-xCu1Nb3.1Si13.4+xB9.1 (0≤â‰⊈.6) microwires. Scripta Materialia, 1999, 1 1319-1327.	1 _{0.5}	40
30	Optimization of magnetic properties and GMI effect of Thin Co-rich Microwires for GMI Microsensors. Sensors, 2020, 20, 1558.	3.8	39
31	Equilibrium magnetization states in magnetic nanotubes and their evolution in external magnetic field. Journal of Magnetism and Magnetic Materials, 2007, 316, e317-e319.	2.3	38
32	Development of Magnetic Microwires for Magnetic Sensor Applications. Sensors, 2019, 19, 4767.	3.8	37
33	Optimization of the giant magnetoimpedance effect of Finemet-type microwires through the nanocrystallization. Journal of Applied Physics, 2014, 115, .	2.5	35
34	Engineering of magnetic properties and GMI effect in Co-rich amorphous microwires. Journal of Alloys and Compounds, 2016, 664, 235-241.	5.5	35
35	Magnetoelastic sensor of liquid level based on magnetoelastic properties of Co-rich microwires. Sensors and Actuators A: Physical, 2000, 81, 129-133.	4.1	33
36	Review of Domain Wall Dynamics Engineering in Magnetic Microwires. Nanomaterials, 2020, 10, 2407.	4.1	33

JUAN MARIA BLANCO

#	Article	IF	CITATIONS
37	Effect of tensile stresses on GMI of Co-rich amorphous microwires. IEEE Transactions on Magnetics, 2005, 41, 3688-3690.	2.1	32
38	Asymmetric torsion giant impedance in nearly-zero magnetostrictive amorphous wires with induced helical anisotropy. Journal Physics D: Applied Physics, 2001, 34, L31-L34.	2.8	31
39	Tailoring of domain wall dynamics in amorphous microwires by annealing. Journal of Applied Physics, 2013, 113, .	2.5	31
40	Effect of annealing on magnetic properties and magnetostriction coefficient of Fe–Ni-based amorphous microwires. Journal of Alloys and Compounds, 2015, 651, 718-723.	5.5	31
41	Advanced functional magnetic microwires for technological applications. Journal Physics D: Applied Physics, 2022, 55, 253003.	2.8	31
42	Influence of the applied tensile stress on the magnetic properties of current annealed amorphous wires. Journal of Applied Physics, 1991, 70, 6522-6524.	2.5	30
43	Magnetoelastic contribution in domain wall dynamics of amorphous microwires. Physica B: Condensed Matter, 2012, 407, 1450-1454.	2.7	30
44	Fast magnetization switching in Fe-rich amorphous microwires: Effect of magnetoelastic anisotropy and role of defects. Journal of Alloys and Compounds, 2014, 586, S287-S290.	5.5	30
45	Engineering of magnetic properties and magnetoimpedance effect in Fe-rich microwires by reversible and irreversible stress-annealing anisotropy. Journal of Alloys and Compounds, 2021, 855, 157460.	5.5	29
46	On the intergranular coupling in soft nanocrystalline materials. Journal of Materials Research, 1996, 11, 512-517.	2.6	28
47	Magnetization reversal of Co-rich wires in circular magnetic field. Journal of Applied Physics, 2002, 91, 537.	2.5	28
48	Helical magnetic anisotropy induced by current annealing under torsion in amorphous wires. IEEE Transactions on Magnetics, 1990, 26, 1798-1800.	2.1	27
49	The effect of annealing on magnetic properties of "Thick―microwires. Journal of Alloys and Compounds, 2020, 831, 150992.	5.5	27
50	Studies of magnetic properties of thin microwires with low Curie temperature. Journal of Magnetism and Magnetic Materials, 2006, 300, 16-23.	2.3	26
51	Stress annealing in Fe73.5Cu1Ta3Si13.5B9amorphous alloy: Induced magnetic anisotropy and variation of the magnetostriction constant. Journal of Applied Physics, 1994, 76, 1131-1134.	2.5	25
52	Fast Magnetization Switching in Thin Wires: Magnetoelastic and Defects Contributions. Sensor Letters, 2013, 11, 170-176.	0.4	25
53	Effect of stress applied on the magnetization profile of Fe–Si–B amorphous wire. Journal of Applied Physics, 2003, 93, 7208-7210.	2.5	24
54	Vortex-type domain structure in Co-rich amorphous wires. Journal of Applied Physics, 2004, 95, 2933-2935.	2.5	24

4

#	Article	IF	CITATIONS
55	Route of magnetoimpedance and domain walls dynamics optimization in Co-based microwires. Journal of Alloys and Compounds, 2020, 830, 154576.	5.5	24
56	Development of thin microwires with low Curie temperature for temperature sensors applications. Sensors and Actuators B: Chemical, 2007, 126, 318-323.	7.8	23
57	Stress dependence of the magnetic properties of glass-coated amorphous microwires. Journal of Alloys and Compounds, 2019, 789, 201-208.	5.5	22
58	Studies of the magnetostriction of as-prepared and annealed glass-coated Co-rich amorphous microwires by SAMR method. Journal Physics D: Applied Physics, 2001, 34, L113-L116.	2.8	21
59	Circular magnetic bistability induced by tensile stress in glass-covered amorphous microwires. Applied Physics Letters, 2003, 82, 610-612.	3.3	21
60	Electronic Surveillance and Security Applications of Magnetic Microwires. Chemosensors, 2021, 9, 100.	3.6	21
61	Stress induced anisotropy and temperature dependence of the magnetostriction in Fe73.5Cu1Nb3Si13.5B9amorphous alloy. Journal of Applied Physics, 1993, 74, 3323-3327.	2.5	20
62	Evaluation of the saturation magnetostriction in nearly zero magnetostrictive glass-coated amorphous microwires. Journal of Applied Physics, 2000, 87, 5950-5952.	2.5	19
63	Circular magnetic bistability in Co-rich amorphous microwires. Journal Physics D: Applied Physics, 2003, 36, 419-422.	2.8	19
64	Effect of nanocrystallization on giant magnetoimpedance effect of Fe-based microwires. Intermetallics, 2014, 51, 59-63.	3.9	19
65	Stress dependence of magnetostriction in amorphous ferromagnets: its variation with temperature and induced anisotropy. Journal of Magnetism and Magnetic Materials, 1992, 114, 75-81.	2.3	18
66	Studies of structural and magnetic properties of glass-coated nanocrystalline Fe79Hf7B12Si2 microwires. Journal of Alloys and Compounds, 2006, 423, 116-119.	5.5	18
67	Engineering of domain wall dynamics in amorphous microwires byÂannealing. Journal of Alloys and Compounds, 2017, 707, 35-40.	5.5	18
68	Magnetic Microwires with Unique Combination of Magnetic Properties Suitable for Various Magnetic Sensor Applications. Sensors, 2020, 20, 7203.	3.8	18
69	Development of Magnetically Soft Amorphous Microwires for Technological Applications. Chemosensors, 2022, 10, 26.	3.6	18
70	High coercivity of partially devitrified glass-coated finemet microwires: effect of geometry and thermal treatment. IEEE Transactions on Magnetics, 2000, 36, 3015-3017.	2.1	17
71	Domain-wall dynamics in glass-coated magnetic microwires. Journal of Magnetism and Magnetic Materials, 2007, 316, 337-339.	2.3	17
72	Tuning of Magnetic Properties and GMI Effect of Co-Based Amorphous Microwires by Annealing. Journal of Electronic Materials, 2014, 43, 4532-4539.	2.2	17

#	Article	IF	CITATIONS
73	Effect of stress-induced anisotropy on high frequency magnetoimpedance effect of Fe and Co-rich glass-coated microwires. Journal of Alloys and Compounds, 2018, 735, 1818-1825.	5.5	17
74	Magneto-optical investigation of the magnetization reversal in Co-rich wires. Physica B: Condensed Matter, 2001, 299, 314-321.	2.7	16
75	Magneto-optical investigation of magnetization reversal in nearly zero magnetostrictive Co-rich wire and microwire. Journal of Magnetism and Magnetic Materials, 2002, 249, 27-33.	2.3	16
76	Asymmetrical magneto-impedance effect in Fe-rich amorphous wires. Journal of Applied Physics, 2004, 95, 6756-6758.	2.5	16
77	Fabrication and magnetic properties of Cu50(Fe69Si10B16C5)50 thin microwires. Journal of Non-Crystalline Solids, 2007, 353, 922-924.	3.1	16
78	Excellent magnetic properties of (Fe0.7Co0.3)83.7Si4B8P3.6Cu0.7 ribbons and microwires. Intermetallics, 2020, 117, 106660.	3.9	16
79	Influence of the thermal treatments and mechanical stress on the magnetic bistable behaviour in a Co-Si-B amorphous wire. IEEE Transactions on Magnetics, 1993, 29, 3475-3477.	2.1	15
80	Compositional dependence of the effective magnetic anisotropy in nanocrystalline Fe–Zr–B–(Cu) alloys. Journal of Applied Physics, 1998, 83, 6338-6340.	2.5	15
81	Domain wall propagation in Fe-rich microwires. Physica B: Condensed Matter, 2008, 403, 382-385.	2.7	15
82	Development of Thin Microwires With Enhanced Magnetic Softness and GMI. IEEE Transactions on Magnetics, 2008, 44, 3958-3961.	2.1	15
83	Short range order of Feî—,Co and Feî—,Ni amorphous alloys from stress and/or field induced magnetic anisotropy. Journal of Non-Crystalline Solids, 1990, 126, 151-154.	3.1	14
84	Dynamics of interacting wires. Journal of Magnetism and Magnetic Materials, 2002, 249, 9-15.	2.3	14
85	Routes for optimization of giant magnetoimpedance effect in magnetic microwires. IEEE Instrumentation and Measurement Magazine, 2020, 23, 56-63.	1.6	14
86	Controlling the domain wall dynamics in Fe-, Ni- and Co-based magnetic microwires. Journal of Alloys and Compounds, 2020, 834, 155170.	5.5	14
87	Effect of Joule heating on giant magnetoimpedance effect and magnetic properties of Co-rich microwires. Journal of Alloys and Compounds, 2021, 883, 160778.	5.5	14
88	Influence of AC Magnetic Field Amplitude on the Surface Magnetoimpedance Tensor in Amorphous Wire With Helical Magnetic Anisotropy. IEEE Transactions on Magnetics, 2004, 40, 3368-3377.	2.1	13
89	Matteucci effect in glass coated microwires. IEEE Transactions on Magnetics, 1999, 35, 3382-3384.	2.1	12
90	Effect of Applied Mechanical Stressses on the Impedance Response in Amorphous Microwires with Vanishing Magnetostriction. Physica Status Solidi A, 2002, 189, 599-608.	1.7	12

#	Article	IF	CITATIONS
91	Surface and Bulk Magnetic Hysteresis Loops of Co-Rich Glass Covered Microwires. IEEE Transactions on Magnetics, 2006, 42, 3889-3892.	2.1	12
92	Kerr Microscopy Study of Magnetic Domain Structure Changes in Amorphous Microwires. IEEE Transactions on Magnetics, 2009, 45, 4279-4281.	2.1	12
93	Effect of annealing on magnetic properties and structure of Fe-Ni based magnetic microwires. Journal of Magnetism and Magnetic Materials, 2017, 433, 278-284.	2.3	12
94	Stress-induced magnetic anisotropy enabling engineering of magnetic softness of Fe-rich amorphous microwires. Journal of Magnetism and Magnetic Materials, 2020, 510, 166939.	2.3	12
95	Tailoring of Magnetic Softness and Magnetoimpedance of Coâ€Rich Microwires by Stress Annealing. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100130.	1.8	12
96	Effect of Interaction on Giant Magnetoimpedance Effect in a System of Few Thin Wires. Sensor Letters, 2007, 5, 10-12.	0.4	12
97	Influences of the helical anisotropy on the bistable behaviour of amorphous wires. Journal of Magnetism and Magnetic Materials, 1997, 168, 177-181.	2.3	11
98	Surface and volume hysteresis loops of Fe-rich glass-coated microwires. Journal of Non-Crystalline Solids, 2001, 287, 374-379.	3.1	11
99	Kerr Effect as Method of Investigation of Magnetization Reversal in Amorphous Wires. Physica Status Solidi A, 2002, 189, 625-629.	1.7	11
100	Transformation of surface domain structure in Co-rich amorphous wires. Sensors and Actuators B: Chemical, 2007, 126, 235-239.	7.8	11
101	Influence of torsion and tensile stress on magnetoimpedance effect in Fe-rich amorphous microwires at high frequencies. Journal of Magnetism and Magnetic Materials, 2007, 316, e896-e899.	2.3	11
102	Magnetic properties and domain wall propagation in FeNiSiB glass-coated microwires. Journal of Applied Physics, 2014, 115, 17A309.	2.5	11
103	Optimization of high frequency magnetoimpedance effect of Fe-rich microwires by stress-annealing. Intermetallics, 2018, 94, 92-98.	3.9	11
104	Stress-Induced Magnetic Anisotropy Enabling Engineering of Magnetic Softness and GMI Effect of Amorphous Microwires. Applied Sciences (Switzerland), 2020, 10, 981.	2.5	11
105	Magnetic Properties and Domain Wall Propagation in Micrometric Amorphous Microwires. Sensor Letters, 2013, 11, 187-190.	0.4	11
106	Induced anisotropy and magnetostriction behaviour of an annealed Co–Fe (Co-rich) amorphous wire. Journal of Magnetism and Magnetic Materials, 1998, 186, 135-138.	2.3	10
107	Magnetic and structural features of glass-coated Cu-based (Co,Fe,Ni,Mn–Cu) alloy microwires. Journal of Magnetism and Magnetic Materials, 2000, 221, 196-206.	2.3	10
108	Sensitive magnetoelastic properties of glass-coated CoMnSiB amorphous microwires for magnetoelastic sensors. Journal of Magnetism and Magnetic Materials, 2002, 249, 402-406.	2.3	10

#	Article	IF	CITATIONS
109	Distribution of switching field fluctuations in Fe-rich wires under tensile stress. Applied Physics Letters, 2006, 88, 152507.	3.3	10
110	GMI effect in ultra-thin glass-coated Co-rich amorphous wires. Sensors and Actuators B: Chemical, 2007, 126, 232-234.	7.8	10
111	Magnetoelastic Effects and Distribution of Defects in Micrometric Amorphous Wires. IEEE Transactions on Magnetics, 2012, 48, 1324-1326.	2.1	10
112	Correlation between the magnetostriction constant and thermal properties of soft magnetic microwires. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1083-1086.	1.8	10
113	Magnetoimpedance Response and Field Sensitivity in Stress-Annealed Co-Based Microwires for Sensor Applications. Sensors, 2020, 20, 3227.	3.8	10
114	Compositional dependence of the stress plus field induced anisotropy in Coî—,Niî—,Siî—,B and Coî—,Feî—,Niî—,Siî– amorphous alloy ribbons. Journal of Non-Crystalline Solids, 1991, 136, 91-96.	-B '3.1	9
115	Helical magnetic anisotropy induced by current annealing under torsion in Co-rich amorphous wires. IEEE Transactions on Magnetics, 1994, 30, 1015-1017.	2.1	9
116	Influence of applied torsion on the bistable behavior of CoSiB amorphous wire. Journal of Applied Physics, 1994, 75, 6315-6317.	2.5	9
117	Dynamic coercive field of bistable amorphous FeSiB wires. Journal Physics D: Applied Physics, 1998, 31, 494-497.	2.8	9
118	Magnetoelastic Contribution in Domain-Wall Dynamics of Magnetically Bistable Microwires. IEEE Transactions on Magnetics, 2011, 47, 3783-3786.	2.1	9
119	Magneto-optical study of domain wall dynamics and giant Barkhausen jump in magnetic microwires. Journal of Magnetism and Magnetic Materials, 2012, 324, 3563-3565.	2.3	9
120	Simultaneous Detection of Giant Magnetoimpedance and Fast Domain Wall Propagation in Co-Based Glass-Coated Microwires. IEEE Magnetics Letters, 2016, 7, 1-4.	1.1	9
121	Optimization of Magnetic Properties of Magnetic Microwires by Post-Processing. Processes, 2020, 8, 1006.	2.8	9
122	Circumferential magnetization processes in CoFeBSi wires. Journal of Applied Physics, 1996, 79, 6539.	2.5	8
123	Stress dependence of the domain wall potential in amorphous CoFeSiB glass-coated microwires. Physica B: Condensed Matter, 2006, 372, 230-233.	2.7	8
124	Effect of magnetic field frequency on coercivity behavior of nanocrystalline Fe79Hf7B12Si2 glass-coated microwires. Physica B: Condensed Matter, 2008, 403, 286-288.	2.7	8
125	High-frequency GMI effect in glass-coated amorphous wires. Journal of Alloys and Compounds, 2009, 488, 9-12.	5.5	8
126	Optimization of GMI Effect and Magnetic Properties of Co-Rich Microwires by Joule Heating. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	8

#	Article	IF	CITATIONS
127	Temperature dependence on the magnetostriction and stress induced magnetic anisotropy in Co45Ni30Si15B10 amorphous alloys. Physica B: Condensed Matter, 1990, 161, 247-250.	2.7	7
128	Influence of the structural rearrangements on the stress sensitivity of magnetostriction in a Co-rich amorphous alloy. Physical Review B, 1992, 46, 3401-3404.	3.2	7
129	Torsional dependence of the magnetostriction of a Co-rich non-magnetostrictive amorphous wire. Journal of Magnetism and Magnetic Materials, 1995, 146, 13-16.	2.3	7
130	Domain wall relaxation in Co-rich amorphous wires. Journal of Magnetism and Magnetic Materials, 1996, 160, 245-246.	2.3	7
131	Processing of magnetic properties of nearly zero magnetostrictive glass-coated microwires by current annealing. IEEE Transactions on Magnetics, 2003, 39, 3613-3615.	2.1	7
132	Air-flux magnetoelastic sensor based on inverse Wiedemann effect of amorphous ribbon. Sensors and Actuators A: Physical, 2003, 106, 174-178.	4.1	7
133	Torsion and tension stress induced transformation of surface magnetic structure in Co-rich amorphous microwires. Journal of Non-Crystalline Solids, 2007, 353, 935-937.	3.1	7
134	Engineering of Magnetic Properties of Co- and Fe-Rich Microwires. IEEE Transactions on Magnetics, 2018, 54, 1-7.	2.1	7
135	Giant magnetoimpedance effect at GHz frequencies in amorphous microwires. AIP Advances, 2019, 9, .	1.3	7
136	High-frequency power loss mechanisms in ultra-thin amorphous ribbons. Journal of Magnetism and Magnetic Materials, 2021, 519, 167469.	2.3	7
137	Advanced functional magnetic microwires for magnetic sensors suitable for biomedical applications. , 2022, , 527-579.		7
138	Fabrication and Magneto-Structural Properties of Co2-Based Heusler Alloy Glass-Coated Microwires with High Curie Temperature. Chemosensors, 2022, 10, 225.	3.6	7
139	Effects of nanocrystallization on the magnetostriction of Co-based amorphous alloys. IEEE Transactions on Magnetics, 1994, 30, 4812-4814.	2.1	6
140	Saturation magnetostriction dependence on torsion in amorphous wire as measured by modified small angle magnetization rotation method. Journal of Magnetism and Magnetic Materials, 1997, 169, 169-177.	2.3	6
141	Interaction between Co-rich glass-covered microwires. Journal Physics D: Applied Physics, 2003, 36, 1058-1061.	2.8	6
142	Effect of high-frequency driving current on magnetization reversal in Co-rich amorphous microwires. Applied Physics Letters, 2004, 85, 2292-2294.	3.3	6
143	Magnetization reversal process at low applied magnetic field in a Co-rich amorphous wire. Physica B: Condensed Matter, 2004, 343, 369-373.	2.7	6
144	Investigation of magnetic structure in cold-drawn Fe-rich amorphous wire. Journal of Magnetism and Magnetic Materials, 2004, 279, 359-362.	2.3	6

JUAN MARIA BLANCO

#	Article	IF	CITATIONS
145	High-frequency magnetoimpedance in amorphous and nanostructured Fe73.5Si13.5B9Cu1Nb3 wires. Journal of Magnetism and Magnetic Materials, 2006, 300, 24-28.	2.3	6
146	Study of surface magnetic properties in Co-rich amorphous microwires. Journal of Magnetism and Magnetic Materials, 2006, 300, e93-e97.	2.3	6
147	Control of domain nucleation in glass covered amorphous microwires. Journal of Applied Physics, 2009, 105, 123911.	2.5	6
148	Fast Magnetization Switching in Amorphous Microwires. Acta Physica Polonica A, 2014, 126, 7-11.	0.5	6
149	High frequency giant magnetoimpedance effect of a stress-annealed Fe-rich glass-coated microwire. Journal of Alloys and Compounds, 2019, 802, 112-117.	5.5	6
150	Impact of Stress Annealing on the Magnetization Process of Amorphous and Nanocrystalline Co-Based Microwires. Materials, 2019, 12, 2644.	2.9	6
151	Development of Co-Rich Microwires with Graded Magnetic Anisotropy. Sensors, 2022, 22, 187.	3.8	6
152	Measurement of magnetostriction and induced magnetic anisotropy by SAMR method in Co-rich stress + field annealed amorphous ribbons. Journal of Magnetism and Magnetic Materials, 1991, 101, 35-36.	2.3	5
153	Influence of Cr addition on the magnetic softness of nanocrystalline FeCuNbSiB alloys. Scripta Metallurgica Et Materialia, 1995, 33, 1757-1764.	1.0	5
154	Influence of the ac magnetic field frequency on the magnetoimpedance of amorphous wire. Journal Physics D: Applied Physics, 2006, 39, 1718-1723.	2.8	5
155	Induced magnetic anisotropy in Co-Si-B amorphous alloys. Journal of Magnetism and Magnetic Materials, 1990, 83, 168-170.	2.3	4
156	Creep-induced magnetic anisotropy and magnetostriction in a nanocrystalline Co based alloy. Journal of Applied Physics, 1997, 81, 5683-5685.	2.5	4
157	Effect of heat treatment on impedance behavior in nearly-zero magnetostriction (Co/sub 0.95/Fe/sub) Tj ETQq1 1	0,784314 2.1	1 rgBT /Overl
158	Effective anisotropy and saturation magnetostriction of soft magnetic FeZrB(Cu) amorphous and nanocrystalline alloys. Nanotechnology, 2003, 14, 304-307.	2.6	4
159	Complex susceptibility measurements in amorphous glass-coated microwires. Journal of Non-Crystalline Solids, 2007, 353, 928-930.	3.1	4
160	Investigation of helical magnetic structure in Co-rich amorphous microwires. Journal of Magnetism and Magnetic Materials, 2007, 316, 332-336.	2.3	4
161	Magneto-optical determination of helical magnetic structure in amorphous microwires. Physica B: Condensed Matter, 2008, 403, 289-292.	2.7	4
162	Experimental determination of limit angle of helical anisotropy in amorphous magnetic microwires. Journal of Magnetism and Magnetic Materials, 2009, 321, 803-805.	2.3	4

#	Article	IF	CITATIONS
163	Magnetic and transport properties of Fe-rich thin cold-drawn amorphous wires. Journal of Alloys and Compounds, 2009, 488, 5-8.	5.5	4
164	Fabrication, structural and magnetic characterization of thin microwires with novel composition Cu70(Co70Fe5Si10B15)30. Journal of Alloys and Compounds, 2009, 483, 566-569.	5.5	4
165	Magnetoelastic Contribution in Domain Wall Propagation of Micrometric Wires. Journal of Nanoscience and Nanotechnology, 2012, 12, 7582-7586.	0.9	4
166	Engineering of Magnetic Properties of Fe-Rich Microwires by Stress Annealing. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	4
167	Tuning of Magnetoimpedance Effect and Magnetic Properties of Fe-Rich Glass-Coated Microwires by Joule Heating. Sensors, 2022, 22, 1053.	3.8	4
168	Influence of the tensile and torsional stress on the magnetic parameters of a Co-rich stress annealed amorphous wire. IEEE Transactions on Magnetics, 1992, 28, 2769-2771.	2.1	3
169	Coercivity and remanence of amorphous and nanocrystalline Fe–(Cu,Ta)–SiB ribbons. Journal of Applied Physics, 1996, 79, 5465.	2.5	3
170	Dynamics of domain walls within two interacting wires. Journal of Applied Physics, 2003, 94, 5896-5900.	2.5	3
171	Structural, magnetic and electrical transport properties in cold-drawn thin Fe-rich wires. Journal of Magnetism and Magnetic Materials, 2005, 294, 193-201.	2.3	3
172	Tensile stress influence on coercive properties in Fe-rich cold-drawn amorphous wires. Journal of Magnetism and Magnetic Materials, 2005, 294, e167-e170.	2.3	3
173	Manipulation of domain wall dynamics in microwires by transverse magnetic field. Journal of the Korean Physical Society, 2013, 62, 1363-1367.	0.7	3
174	Structural, magnetic characterization (dependencies of coercivity and loss with the frequency) of magnetic cores based in Finemet. Journal of Magnetism and Magnetic Materials, 2017, 443, 124-130.	2.3	3
175	Stress-Induced Magnetic Anisotropy Enabling Engineering of Magnetic Softness GMI Effect and Domain Wall Dynamics of Amorphous Microwires. Physics of Metals and Metallography, 2020, 121, 316-321.	1.0	3
176	Thermal dependence of the anisotropic contribution to the stress derivative of the magnetostriction in (Co0.95Fe0.05)80Si10B10 amorphous alloy. Journal of Magnetism and Magnetic Materials, 1991, 102, 63-66.	2.3	2
177	Effective anisotropy and magnetostriction of the amorphous and nanocrystalline Fe/sub 83/Zr/sub 7/B/sub 8/Cu/sub 2/ alloy. IEEE Transactions on Magnetics, 1997, 33, 3919-3921.	2.1	2
178	Magnetic and magnetostrictive behavior of amorphous and nanocrystalline (by current annealing) Fe86Zr7B6Cu1 alloy. Scripta Materialia, 1997, 8, 711-718.	0.5	2
179	Characterization of amorphous FeZrB(Cu) alloys by the inductance spectroscopy method. Journal of Applied Physics, 2000, 87, 7112-7114.	2.5	2
180	Effect of annealing on torsion giant impedance of Co-rich amorphous wires with vanishing magnetostriction. Journal of Applied Physics, 2002, 91, 8426.	2.5	2

#	Article	IF	CITATIONS
181	Switching Field Dependence on Applied Field Orientation in Bistable Fe-Rich Microwires. Physica Status Solidi A, 2002, 189, 795-798.	1.7	2
182	Influence of an ac magnetic field and induced magnetic anisotropy on the surface magnetoimpedance tensor in an amorphous wire. Journal Physics D: Applied Physics, 2004, 37, 2773-2779.	2.8	2
183	Helical magnetic structure in cold-drawn Fe-rich amorphous wire. IEEE Transactions on Magnetics, 2005, 41, 3250-3252.	2.1	2
184	The influence of glass coating on the single domain wall potential in amorphous glass-coated Fe-based microwires. Journal of Magnetism and Magnetic Materials, 2006, 304, e519-e521.	2.3	2
185	Giant magnetoimpedance and magneto-optical Kerr effects in (Co63Ni37)75Si15B10 amorphous ribbon. Intermetallics, 2020, 125, 106925.	3.9	2
186	Effect of the direction of field annealing on the stress + field induced magnetic anisotropy in Co–Fe–Ni amorphous alloys. Journal of Materials Research, 1992, 7, 1602-1605.	2.6	1
187	Influence of Cu and Ta on the stress induced anisotropy in FeSiB amorphous ribbons. IEEE Transactions on Magnetics, 1995, 31, 3781-3783.	2.1	1
188	Effect of the Cu and Nb additives on the effective magnetic anisotropy in FeSiB alloys. Journal of Applied Physics, 1997, 81, 4646-4648.	2.5	1
189	Large Barkhausen jumps in relaxed Co-rich amorphous alloy ribbons. IEEE Transactions on Magnetics, 1997, 33, 3778-3780.	2.1	1
190	Stochastic resonance in bistable magnetic wires. Physica A: Statistical Mechanics and Its Applications, 2003, 325, 110-115.	2.6	1
191	High frequency electric current influence on circular bistability in Co-rich amorphous microwires. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 3385-3388.	0.8	1
192	Surface magnetization reversal in Co-rich amorphous microwires in perpendicular magnetic fields. Physica B: Condensed Matter, 2004, 343, 374-378.	2.7	1
193	Domain walls collision in Fe-rich and Co-rich glass covered microwires. EPJ Web of Conferences, 2013, 40, 17004.	0.3	1
194	Magnetic Properties of Nanocrystalline Microwires. Journal of Electronic Materials, 2016, 45, 212-218.	2.2	1
195	Heusler-type glass-coated microwires: Fabrication, characterization, and properties. , 2020, , 255-294.		1
196	Engineering of Magnetic Properties of Magnetic Microwires. Acta Physica Polonica A, 2018, 133, 321-328.	0.5	1
197	Magnetic and magnetotransport properties in thin Fe-rich wires processed by cold drawing. Physics of Metals and Metallography, 2006, 102, S8-S12.	1.0	0
198	Studies of the remagnetization process in cold drawn Fe-rich thin amorphous wires. Journal of Magnetism and Magnetic Materials, 2007, 310, e893-e895.	2.3	0

#	Article	IF	CITATIONS
199	Development of Stress and Temperature Sensitive Microwires for the Sensor Applications and Tuneable Composite Materials. Advances in Science and Technology, 2008, 54, 180-186.	0.2	0
200	Engineering of Giant Magnetoimpedance Effect in Co-rich Microwires by Joule heating. , 2018, , .		0
201	Optimization of Giant Magnetoimpedance Effect in Fe-rich Microwires. , 2018, , .		0
202	Tailoring of Magnetic Properties and GMI Effect in Thin Amorphous Wires. , 2014, , 785-792.		0
203	Tailoring of Magnetic Properties and Magnetoimpedance Effect in Thin Amorphous Wires. Acta Physica Polonica A, 2016, 129, 694-697.	0.5	0