Olivier Armant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1006066/publications.pdf

Version: 2024-02-01

48 2,367 23 46
papers citations h-index g-index

51 51 51 4067 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Multi-Dimensional Transcriptome Analysis Reveals Modulation of Cholesterol Metabolism as Highly Integrated Response to Brain Injury. Frontiers in Neuroscience, 2021, 15, 671249.	2.8	8
2	A systems biology analysis of reproductive toxicity effects induced by multigenerational exposure to ionizing radiation in C. elegans. Ecotoxicology and Environmental Safety, 2021, 225, 112793.	6.0	10
3	Dose-dependent genomic DNA hypermethylation and mitochondrial DNA damage in Japanese tree frogs sampled in the Fukushima Daiichi area. Journal of Environmental Radioactivity, 2020, 225, 106429.	1.7	10
4	Expression of a Barhlla reporter in subsets of retinal ganglion cells and commissural neurons of the developing zebrafish brain. Scientific Reports, 2020, 10, 8814.	3.3	0
5	Ionising Radiation Induces Promoter DNA Hypomethylation and Perturbs Transcriptional Activity of Genes Involved in Morphogenesis during Gastrulation in Zebrafish. International Journal of Molecular Sciences, 2020, 21, 4014.	4.1	7
6	Adverse effects induced by chronic gamma irradiation in progeny of adult fish not affecting parental reproductive performance. Environmental Toxicology and Chemistry, 2019, 38, 2556-2567.	4.3	8
7	Loss of ASAP1 in mice impairs adipogenic and osteogenic differentiation of mesenchymal progenitor cells through dysregulation of FAK/Src and AKT signaling. PLoS Genetics, 2019, 15, e1008216.	3.5	27
8	A systems biology approach reveals neuronal and muscle developmental defects after chronic exposure to ionising radiation in zebrafish. Scientific Reports, 2019, 9, 20241.	3.3	10
9	Suppression of dsRNA response genes and innate immunity following Oct4, Stella, and Nanos2 overexpression in mouse embryonic fibroblasts. Cytokine, 2018, 106, 1-11.	3.2	7
10	zHSF1 modulates zper2 expression in zebrafish embryos. Chronobiology International, 2018, 35, 1008-1015.	2.0	1
11	Transgenerational DNA Methylation Changes in <i>Daphnia magna</i> Exposed to Chronic Î ³ Irradiation. Environmental Science & Technology, 2018, 52, 4331-4339.	10.0	55
12	The Cdx2 homeobox gene suppresses intestinal tumorigenesis through non–cell-autonomous mechanisms. Journal of Experimental Medicine, 2018, 215, 911-926.	8.5	33
13	Tritiated water exposure disrupts myofibril structure and induces mis-regulation of eye opacity and DNA repair genes in zebrafish early life stages. Aquatic Toxicology, 2018, 200, 114-126.	4.0	18
14	Single amino acid fingerprinting of the human antibody repertoire with high density peptide arrays. Journal of Immunological Methods, 2017, 443, 45-54.	1.4	45
15	Epigenetic, histopathological and transcriptomic effects following exposure to depleted uranium in adult zebrafish and their progeny. Aquatic Toxicology, 2017, 184, 14-25.	4.0	24
16	Fine-tuning and autoregulation of the intestinal determinant and tumor suppressor homeobox gene CDX2 by alternative splicing. Cell Death and Differentiation, 2017, 24, 2173-2186.	11.2	13
17	Whole transcriptome data of zebrafish exposed to chronic dose of depleted uranium. Data in Brief, 2017, 14, 474-482.	1.0	2
18	Zebrafish exposure to environmentally relevant concentration of depleted uranium impairs progeny development at the molecular and histological levels. PLoS ONE, 2017, 12, e0177932.	2.5	23

#	Article	IF	CITATIONS
19	A ruthenium anticancer compound interacts with histones and impacts differently on epigenetic and death pathways compared to cisplatin. Oncotarget, 2017, 8, 2568-2584.	1.8	44
20	Development of Bag-1L as a therapeutic target in androgen receptor-dependent prostate cancer. ELife, 2017, 6, .	6.0	32
21	Lmx1b is required for the glutamatergic fates of a subset of spinal cord neurons. Neural Development, $2016, 11, 16.$	2.4	14
22	The in vitro PIG-A gene mutation assay: glycosylphosphatidylinositol (GPI)-related genotype-to-phenotype relationship in TK6 cells. Archives of Toxicology, 2016, 90, 1729-1736.	4.2	17
23	The Tetraodon nigroviridis reference transcriptome: developmental transition, length retention and microsynteny of long non-coding RNAs in a compact vertebrate genome. Scientific Reports, 2016, 6, 33210.	3.3	14
24	Fungi use the SakA (HogA) pathway for phytochrome-dependent light signalling. Nature Microbiology, 2016, 1, 16019.	13.3	89
25	Whole transcriptome data analysis of zebrafish mutants affecting muscle development. Data in Brief, 2016, 8, 61-68.	1.0	7
26	HeRBi: Helmholtz Repository of Bioparts. Zebrafish, 2016, 13, 234-235.	1.1	1
27	Loss of function of myosin chaperones triggers Hsf1-mediated transcriptional response in skeletal muscle cells. Genome Biology, 2015, 16, 267.	8.8	27
28	Comprehensive expression map of transcription regulators in the adult zebrafish telencephalon reveals distinct neurogenic niches. Journal of Comparative Neurology, 2015, 523, 1202-1221.	1.6	50
29	p53 is active in murine stem cells and alters the transcriptome in a manner that is reminiscent of mutant p53. Cell Death and Disease, 2015, 6, e1662-e1662.	6.3	15
30	The Helix-Loop-Helix Protein Id1 Controls Stem Cell Proliferation During Regenerative Neurogenesis in the Adult Zebrafish Telencephalon. Stem Cells, 2015, 33, 892-903.	3. 2	69
31	Whole genome and transcriptome analyses of environmental antibiotic sensitive and multiâ€resistant <scp><i>P</i></scp> <i>seudomonas aeruginosa</i> isolates exposed to waste water and tap water. Microbial Biotechnology, 2015, 8, 116-130.	4.2	21
32	Molecular Description of Eye Defects in the Zebrafish Pax6b Mutant, sunrise, Reveals a Pax6b-Dependent Genetic Network in the Developing Anterior Chamber. PLoS ONE, 2015, 10, e0117645.	2.5	32
33	Development of the prethalamus is crucial for thalamocortical projection formation and is regulated by Olig2. Development (Cambridge), 2014, 141, 2075-2084.	2.5	22
34	Two independent transcription initiation codes overlap on vertebrate core promoters. Nature, 2014, 507, 381-385.	27.8	182
35	Gene transcription in the zebrafish embryo: regulators and networks. Briefings in Functional Genomics, 2014, 13, 131-143.	2.7	14
36	Proteome dynamics in neutrophils of adult zebrafish upon chemically-induced inflammation. Fish and Shellfish Immunology, 2014, 40, 217-224.	3.6	13

#	Article	IF	CITATIONS
37	Knockout of Extracytoplasmic Function Sigma Factor ECF-10 Affects Stress Resistance and Biofilm Formation in Pseudomonas putida KT2440. Applied and Environmental Microbiology, 2014, 80, 4911-4919.	3.1	27
38	Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis. Genome Research, 2013, 23, 1938-1950.	5 . 5	119
39	Gene Responses in the Central Nervous System of Zebrafish Embryos Exposed to the Neurotoxicant Methyl Mercury. Environmental Science & Eamp; Technology, 2013, 47, 3316-3325.	10.0	69
40	Genome-wide, whole mount in situ analysis of transcriptional regulators in zebrafish embryos. Developmental Biology, 2013, 380, 351-362.	2.0	54
41	Fishing for melanoma markers through comparative transcriptome analysis. Pigment Cell and Melanoma Research, 2012, 25, 709-710.	3.3	0
42	Expression at the Imprinted Dlk1-Gtl2 Locus Is Regulated by Proneural Genes in the Developing Telencephalon. PLoS ONE, 2012, 7, e48675.	2.5	12
43	The Light Responsive Transcriptome of the Zebrafish: Function and Regulation. PLoS ONE, 2011, 6, e17080.	2.5	90
44	Characterization of the proneural gene regulatory network during mouse telencephalon development. BMC Biology, 2008, 6, 15.	3.8	95
45	Neurogenin 2 controls cortical neuron migration through regulation of Rnd2. Nature, 2008, 455, 114-118.	27.8	249
46	Sprouty2 inhibits BDNF-induced signaling and modulates neuronal differentiation and survival. Cell Death and Differentiation, 2007, 14, 1802-1812.	11.2	65
47	Proneural bHLH and Brn Proteins Coregulate a Neurogenic Program through Cooperative Binding to a Conserved DNA Motif. Developmental Cell, 2006, 11, 831-844.	7.0	267
48	Sequential phases of cortical specification involve Neurogenin-dependent and -independent pathways. EMBO Journal, 2004, 23, 2892-2902.	7.8	355