
L Courtney Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1005032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A flow cytometry based approach to identify distinct coelomocyte subsets of the purple sea urchin, Strongylocentrotus purpuratus. Developmental and Comparative Immunology, 2022, 130, 104352.	2.3	3
2	Lipofection mediated transfection fails for sea urchin coelomocytes. PLoS ONE, 2022, 17, e0267911.	2.5	2
3	Guardian of the Genome: An Alternative RAG/Transib Co-Evolution Hypothesis for the Origin of V(D)J Recombination. Frontiers in Immunology, 2021, 12, 709165.	4.8	8
4	Sequence Diversity, Locus Structure, and Evolutionary History of the SpTransformer Genes in the Sea Urchin Genome. Frontiers in Immunology, 2021, 12, 744783.	4.8	4
5	Individual Sea Urchin Coelomocytes Undergo Somatic Immune Gene Diversification. Frontiers in Immunology, 2019, 10, 1298.	4.8	19
6	The Axial Organ and the Pharynx Are Sites of Hematopoiesis in the Sea Urchin. Frontiers in Immunology, 2019, 10, 870.	4.8	25
7	Methods for collection, handling, and analysis of sea urchin coelomocytes. Methods in Cell Biology, 2019, 150, 357-389.	1.1	29
8	SpTransformer proteins from the purple sea urchin opsonize bacteria, augment phagocytosis, and retard bacterial growth. PLoS ONE, 2018, 13, e0196890.	2.5	21
9	Echinodermata: The Complex Immune System in Echinoderms. , 2018, , 409-501.		62
10	Multitasking Immune Sp185/333 Protein, rSpTransformer-E1, and Its Recombinant Fragments Undergo Secondary Structural Transformation upon Binding Targets. Journal of Immunology, 2017, 198, 2957-2966.	0.8	12
11	The Recombinant Sea Urchin Immune Effector Protein, rSpTransformer-E1, Binds to Phosphatidic Acid and Deforms Membranes. Frontiers in Immunology, 2017, 8, 481.	4.8	13
12	The SpTransformer Gene Family (Formerly Sp185/333) in the Purple Sea Urchin and the Functional Diversity of the Anti-Pathogen rSpTransformer-E1 Protein. Frontiers in Immunology, 2017, 8, 725.	4.8	28
13	Genomic Instability and Shared Mechanisms for Gene Diversification in Two Distant Immune Gene Families: The Plant NBS-LRR Genes and the Echinoid 185/333 Genes. , 2016, , 295-310.		15
14	A recombinant Sp185/333 protein from the purple sea urchin has multitasking binding activities towards certain microbes and PAMPs. Immunobiology, 2016, 221, 889-903.	1.9	19
15	Short tandem repeats, segmental duplications, gene deletion, and genomic instability in a rapidly diversified immune gene family. BMC Genomics, 2016, 17, 900.	2.8	25
16	Extraordinary Diversity of Immune Response Proteins among Sea Urchins: Nickel-Isolated Sp185/333 Proteins Show Broad Variations in Size and Charge. PLoS ONE, 2015, 10, e0138892.	2.5	26
17	Single Sea Urchin Phagocytes Express Messages of a Single Sequence from the Diverse <i>Sp185/333</i> Gene Family in Response to Bacterial Challenge. Journal of Immunology, 2014, 193, 5678-5688.	0.8	29
18	Shotgun proteomics of coelomic fluid from the purple sea urchin, Strongylocentrotus purpuratus. Developmental and Comparative Immunology, 2013, 40, 35-50.	2.3	27

L COURTNEY SMITH

#	Article	IF	CITATIONS
19	The <i>Sp185/333</i> i>immune response genes and proteins are expressed in cells dispersed within all major organs of the adult purple sea urchin. Innate Immunity, 2013, 19, 569-587.	2.4	33
20	Aggregation of Sea Urchin Phagocytes Is Augmented In Vitro by Lipopolysaccharide. PLoS ONE, 2013, 8, e61419.	2.5	39
21	Innate immune complexity in the purple sea urchin: diversity of the Sp185/333 system. Frontiers in Immunology, 2012, 3, 70.	4.8	43
22	Invertebrate immune diversity. Developmental and Comparative Immunology, 2011, 35, 959-974.	2.3	141
23	An Sp185/333 gene cluster from the purple sea urchin and putative microsatellite-mediated gene diversification. BMC Genomics, 2010, 11, 575.	2.8	25
24	Diversification of innate immune genes: lessons from the purple sea urchin. DMM Disease Models and Mechanisms, 2010, 3, 274-279.	2.4	24
25	Two recombinant peptides, SpStrongylocins 1 and 2, from Strongylocentrotus purpuratus, show antimicrobial activity against Gram-positive and Gram-negative bacteria. Developmental and Comparative Immunology, 2010, 34, 286-292.	2.3	25
26	Sp185/333: A novel family of genes and proteins involved in the purple sea urchin immune response. Developmental and Comparative Immunology, 2010, 34, 235-245.	2.3	57
27	SpTie1/2 is expressed in coelomocytes, axial organ and embryos of the sea urchin Strongylocentrotus purpuratus, and is an orthologue of vertebrate Tie1 and Tie2. Developmental and Comparative Immunology, 2010, 34, 884-895.	2.3	13
28	Echinoderm Immunity. Advances in Experimental Medicine and Biology, 2010, 708, 260-301.	1.6	134
29	Highly Variable Immune-Response Proteins (185/333) from the Sea Urchin, <i>Strongylocentrotus purpuratus</i> : Proteomic Analysis Identifies Diversity within and between Individuals. Journal of Immunology, 2009, 182, 2203-2212.	0.8	57
30	A method for identifying alternative or cryptic donor splice sites within gene and mRNA sequences. Comparisons among sequences from vertebrates, echinoderms and other groups. BMC Genomics, 2009, 10, 318.	2.8	5
31	Localization and diversity of 185/333 proteins from the purple sea urchin – unexpected protein-size range and protein expression in a new coelomocyte type. Journal of Cell Science, 2008, 121, 339-348.	2.0	68
32	Brief review of McDowell and Simon. Developmental and Comparative Immunology, 2008, 32, 735.	2.3	0
33	Sequence Variations in <i>185/333</i> Messages from the Purple Sea Urchin Suggest Posttranscriptional Modifications to Increase Immune Diversity. Journal of Immunology, 2008, 181, 8585-8594.	0.8	34
34	Distinctive expression patterns of 185/333 genes in the purple sea urchin, Strongylocentrotus purpuratus: an unexpectedly diverse family of transcripts in response to LPS, β-1,3-glucan, and dsRNA. BMC Molecular Biology, 2007, 8, 16.	3.0	84
35	Extraordinary diversity among members of the large gene family, 185/333, from the purple sea urchin, Strongylocentrotus purpuratus. BMC Molecular Biology, 2007, 8, 68.	3.0	56
36	The Genome of the Sea Urchin <i>Strongylocentrotus purpuratus</i> . Science, 2006, 314, 941-952.	12.6	1,018

L COURTNEY SMITH

#	Article	IF	CITATIONS
37	The immune gene repertoire encoded in the purple sea urchin genome. Developmental Biology, 2006, 300, 349-365.	2.0	513
38	Unexpected diversity displayed in cDNAs expressed by the immune cells of the purple sea urchin, Strongylocentrotus purpuratus. Physiological Genomics, 2006, 26, 134-144.	2.3	64
39	Genomic Insights into the Immune System of the Sea Urchin. Science, 2006, 314, 952-956.	12.6	384
40	Macroarray analysis of coelomocyte gene expression in response to LPS in the sea urchin. Identification of unexpected immune diversity in an invertebrate. Physiological Genomics, 2005, 22, 33-47.	2.3	149
41	The sea urchin complement homologue, SpC3, functions as an opsonin. Journal of Experimental Biology, 2004, 207, 2147-2155.	1.7	75
42	Two cDNAs from the purple sea urchin, Strongylocentrotus purpuratus , encoding mosaic proteins with domains found in factor H, factor I, and complement components C6 and C7. Immunogenetics, 2004, 56, 89-106.	2.4	48
43	Constitutive expression and alternative splicing of the exons encoding SCRs in Sp152, the sea urchin homologue of complement factor B. Implications on the evolution of the Bf/C2 gene family. Immunogenetics, 2004, 56, 531-543.	2.4	21
44	Workshop report: evolutionary immunobiology—new approaches, new paradigms. Developmental and Comparative Immunology, 2003, 27, 263-271.	2.3	7
45	The gene encoding the sea urchin complement protein, SpC3, is expressed in embryos and can be upregulated by bacteria. Developmental and Comparative Immunology, 2003, 27, 529-538.	2.3	35
46	Thioester function is conserved in SpC3, the sea urchin homologue of the complement component C3. Developmental and Comparative Immunology, 2002, 26, 603-614.	2.3	22
47	Origin and Evolution of the Vertebrate Immune System. L. Du Pasquier , G. W. Litman. Quarterly Review of Biology, 2001, 76, 79-79.	0.1	0
48	The ancestral complement system in sea urchins. Immunological Reviews, 2001, 180, 16-34.	6.0	124
49	The Complement System in Sea Urchins. Advances in Experimental Medicine and Biology, 2001, 484, 363-372.	1.6	19
50	Expression of SpC3, the sea urchin complement component, in response to lipopolysaccharide. Immunogenetics, 2000, 51, 1021-1033.	2.4	68
51	SpC3, the complement homologue from the purple sea urchin, Strongylocentrotus purpuratus , is expressed in two subpopulations of the phagocytic coelomocytes. Immunogenetics, 2000, 51, 1034-1044.	2.4	93
52	Echinoderm immunity and the evolution of the complement system. Developmental and Comparative Immunology, 1999, 23, 429-442.	2.3	145
53	Coelomocytes express SpBf, a homologue of factor B, the second component in the sea urchin complement system. Journal of Immunology, 1998, 161, 6784-93.	0.8	77
54	HP7 The sea urchin complement C3 protein: Expression and function. Developmental and Comparative Immunology, 1997, 21, 150.	2.3	1

L COURTNEY SMITH

#	Article	IF	CITATIONS
55	The Echinoderm Immune System Annals of the New York Academy of Sciences, 1994, 712, 213-226.	3.8	69
56	The sea urchin profilin gene is specifically expressed in mesenchyme cells during gastrulation. Developmental Biology, 1994, 164, 463-474.	2.0	12
57	Reply by Smith and Davidson. Trends in Immunology, 1993, 14, 93-94.	7.5	1
58	The Role of Mesohyl Cells in Sponge Allograft Rejections. , 1988, , 15-30.		3