
Shixia Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10044954/publications.pdf Version: 2024-02-01

SHIVIA WANG

#	Article	IF	CITATIONS
1	Non-neutralizing antibodies targeting the immunogenic regions of HIV-1 envelope reduce mucosal infection and virus burden in humanized mice. PLoS Pathogens, 2022, 18, e1010183.	4.7	8
2	Broadly binding and functional antibodies and persisting memory B cells elicited by HIV vaccine PDPHV. Npj Vaccines, 2022, 7, 18.	6.0	2
3	High Neutralizing Antibody Levels Against Severe Acute Respiratory Syndrome Coronavirus 2 Omicron BA.1 and BA.2 After UB-612 Vaccine Booster. Journal of Infectious Diseases, 2022, 226, 1401-1406.	4.0	18
4	A novel DNA and protein combination COVID-19 vaccine formulation provides full protection against SARS-CoV-2 in rhesus macaques. Emerging Microbes and Infections, 2021, 10, 342-355.	6.5	37
5	DNA priming immunization is more effective than recombinant protein vaccine in eliciting antigen-specific B cell responses. Emerging Microbes and Infections, 2021, 10, 833-841.	6.5	6
6	The values and limitations of mathematical modelling to COVID-19 in the world: a follow up report. Emerging Microbes and Infections, 2020, 9, 2465-2473.	6.5	2
7	Glycan Profiles of gp120 Protein Vaccines from Four Major HIV-1 Subtypes Produced from Different Host Cell Lines under Non-GMP or GMP Conditions. Journal of Virology, 2020, 94, .	3.4	12
8	Mathematic modeling of COVID-19 in the United States. Emerging Microbes and Infections, 2020, 9, 827-829.	6.5	46
9	Use of ELISpot assay to study HBs-specific B cell responses in vaccinated and HBV infected humans. Emerging Microbes and Infections, 2018, 7, 1-10.	6.5	30
10	Application of area scaling analysis to identify natural killer cell and monocyte involvement in the GranToxiLux antibody dependent cellâ€mediated cytotoxicity assay. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 436-447.	1.5	18
11	HIV-1 R5 Macrophage-Tropic Envelope Glycoprotein Trimers Bind CD4 with High Affinity, while the CD4 Binding Site on Non-macrophage-tropic, T-Tropic R5 Envelopes Is Occluded. Journal of Virology, 2018, 92, .	3.4	14
12	Select gp120 V2 domain specific antibodies derived from HIV and SIV infection and vaccination inhibit gp120 binding to α4β7. PLoS Pathogens, 2018, 14, e1007278.	4.7	29
13	The wide utility of rabbits as models of human diseases. Experimental and Molecular Medicine, 2018, 50, 1-10.	7.7	103
14	Structural Comparison of Human Anti-HIV-1 gp120 V3 Monoclonal Antibodies of the Same Gene Usage Induced by Vaccination and Chronic Infection. Journal of Virology, 2018, 92, .	3.4	7
15	Using DNA Immunization to Elicit Monoclonal Antibodies in Mice, Rabbits, and Humans. Human Gene Therapy, 2018, 29, 997-1003.	2.7	4
16	Structural Analysis of the Glycosylated Intact HIV-1 gp120–b12 Antibody Complex Using Hydroxyl Radical Protein Footprinting. Biochemistry, 2017, 56, 957-970.	2.5	27
17	Differential induction of anti-V3 crown antibodies with cradle- and ladle-binding modes in response to HIV-1 envelope vaccination. Vaccine, 2017, 35, 1464-1473.	3.8	15
18	The dynamics of immunoglobulin V-gene usage and clonotype expansion in mice after prime and boost immunizations as analyzed by NGS. Human Vaccines and Immunotherapeutics, 2017, 13, 2987-2995.	3.3	1

SHIXIA WANG

#	Article	IF	CITATIONS
19	Screening of primary gp120 immunogens to formulate the next generation polyvalent DNA prime-protein boost HIV-1 vaccines. Human Vaccines and Immunotherapeutics, 2017, 13, 2996-3009.	3.3	7
20	DNA immunization as a technology platform for monoclonal antibody induction. Emerging Microbes and Infections, 2016, 5, 1-12.	6.5	45
21	Rationally Designed Immunogens Targeting HIV-1 gp120 V1V2 Induce Distinct Conformation-Specific Antibody Responses in Rabbits. Journal of Virology, 2016, 90, 11007-11019.	3.4	41
22	Rationally Designed Vaccines Targeting the V2 Region of HIV-1 gp120 Induce a Focused, Cross-Clade-Reactive, Biologically Functional Antibody Response. Journal of Virology, 2016, 90, 10993-11006.	3.4	33
23	Fc Receptor-Mediated Activities of Env-Specific Human Monoclonal Antibodies Generated from Volunteers Receiving the DNA Prime-Protein Boost HIV Vaccine DP6-001. Journal of Virology, 2016, 90, 10362-10378.	3.4	26
24	Follicular regulatory TÂcells repress cytokine production by follicular helper TÂcells and optimize IgG responses in mice. European Journal of Immunology, 2016, 46, 1152-1161.	2.9	131
25	A cGAS-Independent STING/IRF7 Pathway Mediates the Immunogenicity of DNA Vaccines. Journal of Immunology, 2016, 196, 310-316.	0.8	72
26	Structural analysis of a novel rabbit monoclonal antibody R53 targeting an epitope in HIV-1 gp120 C4 region critical for receptor and co-receptor binding. Emerging Microbes and Infections, 2015, 4, 1-8.	6.5	14
27	Effect of vaccine administration modality on immunogenicity and efficacy. Expert Review of Vaccines, 2015, 14, 1509-1523.	4.4	171
28	Identification of Aim2 as a Sensor for DNA Vaccines. Journal of Immunology, 2015, 194, 630-636.	0.8	47
29	Concurrent Measurement of Dynamic Changes in Viral Load, Serum Enzymes, T Cell Subsets, and Cytokines in Patients with Severe Fever with Thrombocytopenia Syndrome. PLoS ONE, 2014, 9, e91679.	2.5	54
30	Pilot Study on the Use of DNA Priming Immunization to Enhance Y. pestis LcrV-Specific B Cell Responses Elicited by a Recombinant LcrV Protein Vaccine. Vaccines, 2014, 2, 36-48.	4.4	10
31	DNA Immunization for HIV Vaccine Development. Vaccines, 2014, 2, 138-159.	4.4	19
32	Reduced MyD88 dependency of ISCOMATRIXâ,,¢ adjuvant in a DNA prime-protein boost HIV vaccine. Human Vaccines and Immunotherapeutics, 2014, 10, 1078-1090.	3.3	10
33	Topology Influences V2 Epitope Focusing. AIDS Research and Human Retroviruses, 2014, 30, A193-A193.	1.1	0
34	A Novel Trimeric V1V2-Scaffold Immunogen Induces V2q-Specific Antibody Responses. AIDS Research and Human Retroviruses, 2014, 30, A121-A121.	1.1	0
35	Contribution of TLR4 and MyD88 for adjuvant monophosphoryl lipid A (MPLA) activity in a DNA prime–protein boost HIV-1 vaccine. Vaccine, 2014, 32, 5049-5056.	3.8	27
36	Vaccine focusing to cross-subtype HIV-1 gp120 variable loop epitopes. Vaccine, 2014, 32, 4916-4924.	3.8	9

SHIXIA WANG

#	Article	lF	CITATIONS
37	Profiles of Acute Cytokine and Antibody Responses in Patients Infected with Avian Influenza A H7N9. PLoS ONE, 2014, 9, e101788.	2.5	20
38	DNA Immunization. Current Protocols in Microbiology, 2013, 31, 18.3.1-18.3.24.	6.5	17
39	DNA vaccine prime followed by boost with live attenuated virus significantly improves antigen-specific T cell responses against human cytomegalovirus. Human Vaccines and Immunotherapeutics, 2013, 9, 2120-2132.	3.3	13
40	Cross reactivity of serum antibody responses elicited by DNA vaccines expressing HA antigens from H1N1 subtype influenza vaccines in the past 30 years. Human Vaccines and Immunotherapeutics, 2013, 9, 2049-2059.	3.3	9
41	Post-translational intracellular trafficking determines the type of immune response elicited by DNA vaccines expressing Gag antigen of Human Immunodeficiency Virus Type 1 (HIV-1). Human Vaccines and Immunotherapeutics, 2013, 9, 2095-2102.	3.3	12
42	Potent monoclonal antibodies against <i>Clostridium difficile</i> toxin A elicited by DNA immunization. Human Vaccines and Immunotherapeutics, 2013, 9, 2157-2164.	3.3	12
43	Pilot study on the immunogenicity of paired Env immunogens from mother-to-child transmitted HIV-1 isolates. Human Vaccines and Immunotherapeutics, 2012, 8, 1638-1647.	3.3	2
44	Involvement of CD8+ T cell-mediated immune responses in LcrV DNA vaccine induced protection against lethal Yersinia pestis challenge. Vaccine, 2011, 29, 6802-6809.	3.8	24
45	Antigen engineering can play a critical role in the protective immunity elicited by Yersinia pestis DNA vaccines. Vaccine, 2010, 28, 2011-2019.	3.8	8
46	Cross-subtype antibody and cellular immune responses induced by a polyvalent DNA prime–protein boost HIV-1 vaccine in healthy human volunteers. Vaccine, 2008, 26, 1098-1110.	3.8	103
47	Cross-subtype antibody and cellular immune responses induced by a polyvalent DNA prime–protein boost HIV-1 vaccine in healthy human volunteers. Vaccine, 2008, 26, 3947-3957.	3.8	91
48	Relative immunogenicity and protection potential of candidate Yersinia Pestis antigens against lethal mucosal plague challenge in Balb/C mice. Vaccine, 2008, 26, 1664-1674.	3.8	24
49	Heterologous HA DNA vaccine prime—inactivated influenza vaccine boost is more effective than using DNA or inactivated vaccine alone in eliciting antibody responses against H1 or H3 serotype influenza viruses. Vaccine, 2008, 26, 3626-3633.	3.8	85
50	Relative contributions of codon usage, promoter efficiency and leader sequence to the antigen expression and immunogenicity of HIV-1 Env DNA vaccine. Vaccine, 2006, 24, 4531-4540.	3.8	92
51	Polyvalent HIV-1 Env vaccine formulations delivered by the DNA priming plus protein boosting approach are effective in generating neutralizing antibodies against primary human immunodeficiency virus type 1 isolates from subtypes A, B, C, D and E. Virology, 2006, 350, 34-47.	2.4	98
52	Hemagglutinin (HA) Proteins from H1 and H3 Serotypes of Influenza A Viruses Require Different Antigen Designs for the Induction of Optimal Protective Antibody Responses as Studied by Codon-Optimized HA DNA Vaccines. Journal of Virology, 2006, 80, 11628-11637.	3.4	82
53	Assays for the assessment of neutralizing antibody activities against Severe Acute Respiratory Syndrome (SARS) associated coronavirus (SCV). Journal of Immunological Methods, 2005, 301, 21-30.	1.4	25
54	Enhanced Immunogenicity of gp120 Protein When Combined with Recombinant DNA Priming To Generate Antibodies That Neutralize the JR-FL Primary Isolate of Human Immunodeficiency Virus Type 1. Journal of Virology, 2005, 79, 7933-7937.	3.4	85

#	Article	IF	CITATIONS
55	Identification of Two Neutralizing Regions on the Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein Produced from the Mammalian Expression System. Journal of Virology, 2005, 79, 1906-1910.	3.4	75
56	Delivery of DNA to Skin by Particle Bombardment. , 2004, 245, 185-196.		22
57	A DNA vaccine producing LcrV antigen in oligomers is effective in protecting mice from lethal mucosal challenge of plague. Vaccine, 2004, 22, 3348-3357.	3.8	80

SHIXIA WANG