Ian S Pearse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1004202/publications.pdf

Version: 2024-02-01

		172457	168389
83	3,338	29	53
papers	citations	h-index	g-index
			4000
83	83	83	4382
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	North American tree migration paced by climate in the West, lagging in the East. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	27
2	INHABIT: A web-based decision support tool for invasive plant species habitat visualization and assessment across the contiguous United States. PLoS ONE, 2022, 17, e0263056.	2.5	10
3	MASTREE+: Timeâ€series of plant reproductive effort from six continents. Global Change Biology, 2022, 28, 3066-3082.	9.5	19
4	Globally, tree fecundity exceeds productivity gradients. Ecology Letters, 2022, 25, 1471-1482.	6.4	11
5	Herbivory changes biomass allocation but does not induce resistance among ramets of an invasive plant. Arthropod-Plant Interactions, 2022, 16, 297-307.	1.1	1
6	Direct and indirect effects of a keystone engineer on a shrublandâ€prairie food web. Ecology, 2021, 102, e03195.	3.2	13
7	Negative effects of an allelopathic invader on AM fungal plant species drive communityâ€level responses. Ecology, 2021, 102, e03201.	3.2	17
8	Fineâ€scale plant defence variability increases topâ€down control of an herbivore. Functional Ecology, 2021, 35, 1437-1447.	3.6	5
9	Longâ€ŧerm surveys support declines in early season forest plants used by bumblebees. Journal of Applied Ecology, 2021, 58, 1431-1441.	4.0	32
10	Is there tree senescence? The fecundity evidence. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	7.1	42
11	The Importance of Forests in Bumble Bee Biology and Conservation. BioScience, 2021, 71, 1234-1248.	4.9	39
12	Understanding mast seeding for conservation and land management. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200383.	4.0	21
13	The ecology and evolution of synchronized reproduction in long-lived plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200369.	4.0	36
14	The effects of ENSO and the North American monsoon on mast seeding in two Rocky Mountain conifer species. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200378.	4.0	14
15	Loss of branches due to winter storms could favor deciduousness in oaks. American Journal of Botany, 2021, 108, 2309-2314.	1.7	4
16	Modes of climate variability bridge proximate and evolutionary mechanisms of masting. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200380.	4.0	14
17	Climate teleconnections synchronize <i>Picea glauca</i> masting and fire disturbance: Evidence for a fireâ€related form of environmental prediction. Journal of Ecology, 2020, 108, 1186-1198.	4.0	35
18	From theory to experiments for testing the proximate mechanisms of mast seeding: an agenda for an experimental ecology. Ecology Letters, 2020, 23, 210-220.	6.4	64

#	Article	IF	Citations
19	Life-History Plasticity and Water-Use Trade-Offs Associated with Drought Resistance in a Clade of California Jewelflowers. American Naturalist, 2020, 195, 691-704.	2.1	14
20	Aridity drives spatiotemporal patterns of masting across the latitudinal range of a dryland conifer. Ecography, 2020, 43, 569-580.	4.5	33
21	Phylogenetic escape from pests reduces pesticides on some crop plants. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26849-26853.	7.1	8
22	Mast seeding patterns are asynchronous at a continental scale. Nature Plants, 2020, 6, 460-465.	9.3	43
23	Generalising indirect defence and resistance of plants. Ecology Letters, 2020, 23, 1137-1152.	6.4	53
24	A modeling workflow that balances automation and human intervention to inform invasive plant management decisions at multiple spatial scales. PLoS ONE, 2020, 15, e0229253.	2.5	15
25	Associational effects of plant ontogeny on damage by a specialist insect herbivore. Oecologia, 2020, 193, 593-602.	2.0	7
26	Population ecology and spatial synchrony in the abundance of leaf gall wasps within and among populations of valley oak (Quercus lobata). Population Ecology, 2020, 62, 220-232.	1.2	5
27	Biogeography and phylogeny of masting: do global patterns fit functional hypotheses?. New Phytologist, 2020, 227, 1557-1567.	7.3	41
28	Development and Delivery of Species Distribution Models to Inform Decision-Making. BioScience, 2019, 69, 544-557.	4.9	170
29	Plants trap pollen to feed predatory arthropods as an indirect resistance against herbivory. Ecology, 2019, 100, e02867.	3.2	5
30	Nonâ€native plants have greater impacts because of differing perâ€capita effects and nonlinear abundance–impact curves. Ecology Letters, 2019, 22, 1214-1220.	6.4	28
31	Seasonal assembly of arthropod communities on milkweeds experiencing simulated herbivory. Arthropod-Plant Interactions, 2019, 13, 99-108.	1.1	3
32	Entrapped carrion increases indirect plant resistance and intraâ€guild predation on a sticky tarweed. Oikos, 2018, 127, 1033-1044.	2.7	14
33	The relationship between invader abundance and impact. Ecosphere, 2018, 9, e02415.	2.2	75
34	Structural changes within trophic levels are constrained by withinâ€family assembly rules at lower trophic levels. Ecology Letters, 2018, 21, 1221-1228.	6.4	26
35	Variation in Plant Defense Suppresses Herbivore Performance. Current Biology, 2018, 28, 1981-1986.e2.	3.9	35
36	Increasing phenological asynchrony between spring green-up and arrival of migratory birds. Scientific Reports, 2017, 7, 1902.	3.3	143

#	Article	IF	CITATIONS
37	Long-Term Trends in Midwestern Milkweed Abundances and Their Relevance to Monarch Butterfly Declines. BioScience, 2017, 67, 343-356.	4.9	56
38	Macroevolutionary constraints to tolerance: tradeâ€offs with drought tolerance and phenology, but not resistance. Ecology, 2017, 98, 2758-2772.	3.2	15
39	Inter-annual variation in seed production has increased over time (1900–2014). Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171666.	2.6	65
40	Tolerance and phenological avoidance of herbivory in tarweed species. Ecology, 2016, 97, 1357-1363.	3.2	18
41	Is the relationship between mastâ€seeding and weather in oaks related to their lifeâ€history or phylogeny?. Ecology, 2016, 97, 2603-2615.	3.2	47
42	Individual resource limitation combined with populationâ€wide pollen availability drives masting in the valley oak (<i>Quercus lobata</i>). Journal of Ecology, 2016, 104, 637-645.	4.0	58
43	Mechanisms of mast seeding: resources, weather, cues, and selection. New Phytologist, 2016, 212, 546-562.	7.3	245
44	The Evolutionary Legacy of Diversification Predicts Ecosystem Function. American Naturalist, 2016, 188, 398-410.	2.1	14
45	Communicative interactions involving plants: information, evolution, and ecology. Current Opinion in Plant Biology, 2016, 32, 69-76.	7.1	22
46	Defensive Traits in Young Pine Trees Cluster into Two Divergent Syndromes Related to Early Growth Rate. PLoS ONE, 2016, 11, e0152537.	2.5	20
47	Individualâ€level differences in generalist caterpillar responses to a plant–plant cue. Ecological Entomology, 2015, 40, 612-619.	2.2	4
48	Leaf phenology mediates provenance differences in herbivore populations on valley oaks in a common garden. Ecological Entomology, 2015, 40, 525-531.	2.2	15
49	What drives masting? The phenological synchrony hypothesis. Ecology, 2015, 96, 184-192.	3.2	124
50	Lagged effects of early-season herbivores on valley oak fecundity. Oecologia, 2015, 178, 361-368.	2.0	19
51	The ecological forecast horizon, and examples of its uses and determinants. Ecology Letters, 2015, 18, 597-611.	6.4	242
52	Tree community shifts and Acorn Woodpecker population increases over three decades in a Californian oak woodland. Canadian Journal of Forest Research, 2015, 45, 1113-1120.	1.7	11
53	Outâ€ofâ€sample predictions from plant–insect food webs: robustness to missing and erroneous trophic interaction records. Ecological Applications, 2015, 25, 1953-1961.	3.8	8
54	Pollen limitation and flower abortion in a windâ€pollinated, masting tree. Ecology, 2015, 96, 587-593.	3.2	42

#	Article	IF	Citations
55	Generalist and sticky plant specialist predators suppress herbivores on a sticky plant. Arthropod-Plant Interactions, 2014, 8, 403-410.	1.1	13
56	Radish introduction affects soil biota and has a positive impact on the growth of a native plant. Oecologia, 2014, 174, 471-478.	2.0	10
57	The phenology–substrateâ€match hypothesis explains decomposition rates of evergreen and deciduous oak leaves. Journal of Ecology, 2014, 102, 28-35.	4.0	16
58	Cues versus proximate drivers: testing the mechanism behind masting behavior. Oikos, 2014, 123, 179-184.	2.7	86
59	Serotiny in California Oaks. Madroño, 2014, 61, 151-158.	0.4	6
60	Stage and Size Structure of Three Species of Oaks In Central Coastal California. Madroñ0, 2014, 61, 1-8.	0.4	8
61	Alien plants versus alien herbivores: does it matter who is non-native in a novel trophic interaction?. Current Opinion in Insect Science, 2014, 2, 20-25.	4.4	11
62	Native plant diversity increases herbivory to non-natives. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141841.	2.6	19
63	Pollen Limitation and Flower Abortion in a Wind-Pollinated, Masting Tree. Bulletin of the Ecological Society of America, 2014, 95, 462-464.	0.2	1
64	Interplant volatile signaling in willows: revisiting the original talking trees. Oecologia, 2013, 172, 869-875.	2.0	52
65	Extinction cascades partially estimate herbivore losses in a complete Lepidoptera–plant food web. Ecology, 2013, 94, 1785-1794.	3.2	29
66	Insect herbivores selectively suppress the <scp>HPL</scp> branch of the oxylipin pathway in host plants. Plant Journal, 2013, 73, 653-662.	5.7	52
67	Headspace Volatiles from 52 oak Species Advertise Induction, Species Identity, and Evolution, but not Defense. Journal of Chemical Ecology, 2013, 39, 90-100.	1.8	30
68	Predicting novel herbivore–plant interactions. Oikos, 2013, 122, 1554-1564.	2.7	81
69	Leaf drop affects herbivory in oaks. Oecologia, 2013, 173, 925-932.	2.0	20
70	Predicting novel trophic interactions in a nonâ€native world. Ecology Letters, 2013, 16, 1088-1094.	6.4	123
71	Do plant–plant signals mediate herbivory consistently in multiple taxa and ecological contexts?. Journal of Plant Interactions, 2013, 8, 203-206.	2.1	9
72	Drivers of specialist herbivore diversity across 10 cities. Landscape and Urban Planning, 2012, 108, 123-130.	7.5	29

#	Article	lF	CITATIONS
73	The predictability of traits and ecological interactions on 17 different crosses of hybrid oaks. Oecologia, 2012, 169, 489-497.	2.0	10
74	GLOBAL PATTERNS OF LEAF DEFENSES IN OAK SPECIES. Evolution; International Journal of Organic Evolution, 2012, 66, 2272-2286.	2.3	116
75	Complex Consequences of Herbivory and Interplant Cues in Three Annual Plants. PLoS ONE, 2012, 7, e38105.	2.5	22
76	The role of leaf defensive traits in oaks on the preference and performance of a polyphagous herbivore, <i>Orgyia vetusta</i> . Ecological Entomology, 2011, 36, 635-642.	2.2	52
77	The parasitoid community of Andricus quercuscalifornicus and its association with gall size, phenology, and location. Biodiversity and Conservation, 2011, 20, 203-216.	2.6	27
78	Similarity and Specialization of the Larval versus Adult Diet of European Butterflies and Moths. American Naturalist, 2011, 178, 372-382.	2.1	65
79	Bird rookeries have different effects on different feeding guilds of herbivores and alter the feeding behavior of a common caterpillar. Arthropod-Plant Interactions, 2010, 4, 189-195.	1.1	5
80	Diet mixing enhances the performance of a generalist caterpillar, <i>Platyprepia virginalis</i> Ecological Entomology, 2010, 35, 92-99.	2.2	41
81	Phylogenetic and trait similarity to a native species predict herbivory on non-native oaks. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18097-18102.	7.1	205
82	Innovation in anti-herbivore defense systems during neopolypoloidy - the functional consequences of instantaneous speciation. Plant Journal, 2006, 47, 196-210.	5.7	30
83	Biochemical and ecological characterization of two peroxidase isoenzymes from the mangrove, Rhizophora mangle. Plant, Cell and Environment, 2005, 28, 612-622.	5.7	23