
## Johannes M Dijkstra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1003885/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Bitiscetin-3, a Novel C-Type Lectin-like Protein Cloned from the Venom Gland of the Viper Bitis arietans,<br>Induces Platelet Agglutination and Inhibits Binding of Von Willebrand Factor to Collagen. Toxins,<br>2022, 14, 236.                                    | 3.4 | 3         |
| 2  | Cognitive behavioral therapy (CBT), acceptance and commitment therapy (ACT), and Morita therapy (MT); comparison of three established psychotherapies and possible common neural mechanisms of psychotherapies. Journal of Neural Transmission, 2022, 129, 805-828. | 2.8 | 3         |
| 3  | A method for making alignments of related protein sequences that share very little similarity; shark<br>interleukin 2 as an example. Immunogenetics, 2021, 73, 35-51.                                                                                               | 2.4 | 7         |
| 4  | Most Japanese individuals are genetically predisposed to recognize an immunogenic protein fragment shared between COVID-19 and common cold coronaviruses. F1000Research, 2021, 10, 196.                                                                             | 1.6 | 7         |
| 5  | The Structure of a Peptide-Loaded Shark MHC Class I Molecule Reveals Features of the Binding between<br>β2-Microglobulin and H Chain Conserved in Evolution. Journal of Immunology, 2021, 207, 308-321.                                                             | 0.8 | 13        |
| 6  | Structural Comparison Between MHC Classes I and II; in Evolution, a Class-II-Like Molecule Probably<br>Came First. Frontiers in Immunology, 2021, 12, 621153.                                                                                                       | 4.8 | 17        |
| 7  | Immunogenetics special issue 2021: Fish Immunology. Immunogenetics, 2021, 73, 1-3.                                                                                                                                                                                  | 2.4 | 2         |
| 8  | Discovery of an ancient MHC category with both class I and class II features. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                                                                                         | 7.1 | 9         |
| 9  | Ancient Cytokine Interleukin 15-Like (IL-15L) Induces a Type 2 Immune Response. Frontiers in Immunology,<br>2020, 11, 549319.                                                                                                                                       | 4.8 | 18        |
| 10 | A Glimpse of the Peptide Profile Presentation by Xenopus laevis MHC Class I: Crystal Structure of pXela-UAA Reveals a Distinct Peptide-Binding Groove. Journal of Immunology, 2020, 204, 147-158.                                                                   | 0.8 | 20        |
| 11 | A fish cytokine related to human IL-3, IL-5, and GM-CSF, induces development of<br>eosinophil/basophil/mast-cell type (EBM) granulocytes. Developmental and Comparative Immunology,<br>2020, 108, 103671.                                                           | 2.3 | 4         |
| 12 | Expected immune recognition of COVID-19 virus by memory from earlier infections with common coronaviruses in a large part of the world population. F1000Research, 2020, 9, 285.                                                                                     | 1.6 | 19        |
| 13 | Expected immune recognition of COVID-19 virus by memory from earlier infections with common coronaviruses in a large part of the world population. F1000Research, 2020, 9, 285.                                                                                     | 1.6 | 20        |
| 14 | Genomic Diversity of the Major Histocompatibility Complex in Health and Disease. Cells, 2019, 8, 1270.                                                                                                                                                              | 4.1 | 10        |
| 15 | Teleost cytotoxic T cells. Fish and Shellfish Immunology, 2019, 95, 422-439.                                                                                                                                                                                        | 3.6 | 32        |
| 16 | Discovery of a Novel MHC Class I Lineage in Teleost Fish which Shows Unprecedented Levels of Ectodomain Deterioration while Possessing an Impressive Cytoplasmic Tail Motif. Cells, 2019, 8, 1056.                                                                  | 4.1 | 13        |
| 17 | Major Histocompatibility Complex (MHC) Genes and Disease Resistance in Fish. Cells, 2019, 8, 378.                                                                                                                                                                   | 4.1 | 70        |
| 18 | Ancient features of the MHC class II presentation pathway, and a model for the possible origin of MHC molecules. Immunogenetics, 2019, 71, 233-249.                                                                                                                 | 2.4 | 31        |

JOHANNES M DIJKSTRA

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Conservation of sequence motifs suggests that the nonclassical MHC class I lineages CD1/PROCR and UT were established before the emergence of tetrapod species. Immunogenetics, 2018, 70, 459-476.                                 | 2.4  | 23        |
| 20 | Major histocompatibility complex (MHC) fragment numbers alone – in Atlantic cod and in general - do<br>not represent functional variability. F1000Research, 2018, 7, 963.                                                          | 1.6  | 8         |
| 21 | Major histocompatibility complex (MHC) fragment numbers alone – in Atlantic cod and in general - do<br>not represent functional variability. F1000Research, 2018, 7, 963.                                                          | 1.6  | 9         |
| 22 | The Structure of the MHC Class I Molecule of Bony Fishes Provides Insights into the Conserved Nature of the Antigen-Presenting System. Journal of Immunology, 2017, 199, 3668-3678.                                                | 0.8  | 37        |
| 23 | Identification of a fourth ancient member of the IL-3/IL-5/GM-CSF cytokine family, KK34, in many mammals. Developmental and Comparative Immunology, 2016, 65, 268-279.                                                             | 2.3  | 16        |
| 24 | Along the Axis between Type 1 and Type 2 Immunity; Principles Conserved in Evolution from Fish to<br>Mammals. Biology, 2015, 4, 814-859.                                                                                           | 2.8  | 62        |
| 25 | The "NF-Ä,BÂinteracting long noncoding RNA―(NKILA) transcript is antisense to cancer-associated gene<br>PMEPA1. F1000Research, 2015, 4, 96.                                                                                        | 1.6  | 27        |
| 26 | A comprehensive analysis of teleost MHC class I sequences. BMC Evolutionary Biology, 2015, 15, 32.                                                                                                                                 | 3.2  | 81        |
| 27 | Identification of a gene for an ancient cytokine, interleukin 15-like, in mammals; interleukins 2 and 15<br>co-evolved with this third family member, all sharing binding motifs for IL-15Rα. Immunogenetics, 2014,<br>66, 93-103. | 2.4  | 33        |
| 28 | TH2 and Treg candidate genes in elephant shark. Nature, 2014, 511, E7-E9.                                                                                                                                                          | 27.8 | 51        |
| 29 | Transcription analysis of two Eomesodermin genes in lymphocyte subsets of two teleost species. Fish and Shellfish Immunology, 2014, 36, 215-222.                                                                                   | 3.6  | 12        |
| 30 | Non-human Inc-DC orthologs encode Wdnm1-like protein. F1000Research, 2014, 3, 160.                                                                                                                                                 | 1.6  | 16        |
| 31 | Non-human Inc-DC orthologs encode Wdnm1-like protein. F1000Research, 2014, 3, 160.                                                                                                                                                 | 1.6  | 12        |
| 32 | Comprehensive analysis of MHC class II genes in teleost fish genomes reveals dispensability of the peptide-loading DM system in a large part of vertebrates. BMC Evolutionary Biology, 2013, 13, 260.                              | 3.2  | 86        |
| 33 | Clonal growth of carp (Cyprinus carpio) T cells inÂvitro: Long-term proliferation ofÂTh2-like cells. Fish<br>and Shellfish Immunology, 2013, 34, 433-442.                                                                          | 3.6  | 33        |
| 34 | G6f-Like Is an ITAM-Containing Collagen Receptor in Thrombocytes. PLoS ONE, 2012, 7, e52622.                                                                                                                                       | 2.5  | 9         |
| 35 | Constitutive high expression of interleukin-4/13A and GATA-3 in gill and skin of salmonid fishes<br>suggests that these tissues form Th2-skewed immune environments. Molecular Immunology, 2011, 48,<br>1360-1368.                 | 2.2  | 109       |
| 36 | The expression of CD8α discriminates distinct T cell subsets in teleost fish. Developmental and Comparative Immunology, 2011, 35, 752-763.                                                                                         | 2.3  | 160       |

JOHANNES M DIJKSTRA

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A molecule in teleost fish, related with human MHC-encoded G6F, has a cytoplasmic tail with ITAM and<br>marks the surface of thrombocytes and in some fishes also of erythrocytes. Immunogenetics, 2010, 62,<br>543-559.  | 2.4 | 20        |
| 38 | Salmonid T cells assemble in the thymus, spleen and in novel interbranchial lymphoid tissue. Journal of Anatomy, 2010, 217, 728-739.                                                                                      | 1.5 | 166       |
| 39 | Zinc-dependent binding between peptides derived from rainbow trout CD8α and LCK. Fish and Shellfish<br>Immunology, 2010, 28, 72-76.                                                                                       | 3.6 | 16        |
| 40 | Comprehensive clarification of two paralogous interleukin 4/13 loci in teleost fish. Immunogenetics, 2008, 60, 383-397.                                                                                                   | 2.4 | 132       |
| 41 | Genomic organization and expression of CD8α and CD8β genes in fugu Takifugu rubripes. Fish and<br>Shellfish Immunology, 2007, 23, 1107-1118.                                                                              | 3.6 | 41        |
| 42 | Identification of Additional Quantitative Trait Loci (QTL) Responsible for Susceptibility to Infectious<br>Pancreatic Necrosis Virus in Rainbow Trout. Fish Pathology, 2007, 42, 131-140.                                 | 0.7 | 31        |
| 43 | A third broad lineage of major histocompatibility complex (MHC) class I in teleost fish; MHC class II<br>linkage and processed genes. Immunogenetics, 2007, 59, 305-321.                                                  | 2.4 | 52        |
| 44 | Identification and characterization of a second CD4-like gene in teleost fish. Molecular Immunology, 2006, 43, 410-419.                                                                                                   | 2.2 | 104       |
| 45 | Polymorphism of two very similar MHC class Ib loci in rainbow trout (Oncorhynchus mykiss).<br>Immunogenetics, 2006, 58, 152-167.                                                                                          | 2.4 | 30        |
| 46 | Characterisation and expression analysis of interleukin 2 (IL-2) and IL-21 homologues in the Japanese pufferfish, Fugu rubripes, following their discovery by synteny. Immunogenetics, 2005, 56, 909-923.                 | 2.4 | 111       |
| 47 | Interchromosomal duplication of major histocompatibility complex class I regions in rainbow trout<br>(Oncorhynchus mykiss), a species with a presumably recent tetraploid ancestry. Immunogenetics, 2005,<br>56, 878-893. | 2.4 | 67        |
| 48 | Growth and Behavioral Traits in Donaldson Rainbow Trout (Oncorhynchus mykiss) Cosegregate with<br>Classical MajorHistocompatibility Complex (MHC) Class I Genotype. Behavior Genetics, 2005, 35, 463-478.                 | 2.1 | 37        |
| 49 | ldentification and Bioactivities of IFN-γ in Rainbow Trout <i>Oncorhynchus mykiss</i> : The First<br>Th1-Type Cytokine Characterized Functionally in Fish. Journal of Immunology, 2005, 175, 2484-2494.                   | 0.8 | 355       |
| 50 | The ontogeny of MHC class I expression in rainbow trout (Oncorhynchus mykiss). Fish and Shellfish<br>Immunology, 2005, 18, 49-60.                                                                                         | 3.6 | 63        |
| 51 | New MHC class Ia domain lineages in rainbow trout (Oncorhynchus mykiss) which are shared with other fish species. Fish and Shellfish Immunology, 2005, 18, 243-254.                                                       | 3.6 | 33        |
| 52 | Identification of an interferon gamma homologue in Fugu, Takifugu rubripes. Fish and Shellfish<br>Immunology, 2004, 17, 403-409.                                                                                          | 3.6 | 152       |
| 53 | The rainbow trout classical MHC class I molecule Onmy-UBA*501 is expressed in similar cell types as mammalian classical MHC class I molecules. Fish and Shellfish Immunology, 2003, 14, 1-23.                             | 3.6 | 53        |
| 54 | Chromosome mapping of MHC class I in rainbow trout (Oncorhynchus mykiss). Fish and Shellfish<br>Immunology, 2003, 14, 171-175.                                                                                            | 3.6 | 10        |

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The promoter of the classical MHC class I locus in rainbow trout (Oncorhynchus mykiss). Fish and Shellfish Immunology, 2003, 14, 177-185.                                                       | 3.6 | 34        |
| 56 | The MHC classïż¼I linkage group is a major determinant in the in vivo rejection of allogeneic<br>erythrocytes in rainbow trout (Oncorhynchus mykiss). Immunogenetics, 2003, 55, 315-324.        | 2.4 | 24        |
| 57 | Adaptive cell-mediated cytotoxicity against allogeneic targets by CD8-positive lymphocytes of rainbow trout (Oncorhynchus mykiss). Developmental and Comparative Immunology, 2003, 27, 323-337. | 2.3 | 89        |
| 58 | MHC class II invariant chain homologues in rainbow trout (Oncorhynchus mykiss). Fish and Shellfish<br>Immunology, 2003, 15, 91-105.                                                             | 3.6 | 34        |
| 59 | A new putative G-protein coupled receptor gene associated with the immune system of rainbow trout<br>(Oncorhynchus mykiss). Fish and Shellfish Immunology, 2003, 15, 117-127.                   | 3.6 | 5         |
| 60 | Classical MHC Class I Genes Composed of Highly Divergent Sequence Lineages Share a Single Locus in<br>Rainbow Trout ( <i>Oncorhynchus mykiss</i> ). Journal of Immunology, 2002, 168, 260-273.  | 0.8 | 86        |
| 61 | The outer membrane fraction of Flavobacterium psychrophilum induces protective immunity in rainbow trout and ayu. Fish and Shellfish Immunology, 2002, 12, 169-179.                             | 3.6 | 65        |
| 62 | Differences in MHC class I genes between strains of rainbow trout ( ). Fish and Shellfish Immunology, 2002, 12, 287-301.                                                                        | 3.6 | 21        |
| 63 | Ubiquitin genes in rainbow trout ( ). Fish and Shellfish Immunology, 2002, 12, 335-351.                                                                                                         | 3.6 | 8         |
| 64 | Exogenous antigens and the stimulation of MHC class I restricted cell-mediated cytotoxicity: possible strategies for fish vaccines. Fish and Shellfish Immunology, 2001, 11, 437-458.           | 3.6 | 27        |
| 65 | Inhibition of Virion Maturation by Simultaneous Deletion of Glycoproteins E, I, and M of Pseudorabies<br>Virus. Journal of Virology, 1999, 73, 5364-5372.                                       | 3.4 | 133       |
| 66 | Glycoproteins gM and gN of Pseudorabies Virus Are Dispensable for Viral Penetration and Propagation in the Nervous Systems of Adult Mice. Journal of Virology, 1999, 73, 10503-10507.           | 3.4 | 10        |
| 67 | Glycoproteins M and N of Pseudorabies Virus Form a Disulfide-Linked Complex. Journal of Virology, 1998, 72, 550-557.                                                                            | 3.4 | 87        |
| 68 | Does CXCR3 chemokine receptor expression by CD8+ T cells affect their moving towards or only their binding to virus-infected monocytes?. F1000Research, 0, 4, 922.                              | 1.6 | 0         |