Petr Neugebauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1003023/publications.pdf

Version: 2024-02-01

62 papers 3,132 citations

257450 24 h-index 56 g-index

62 all docs

62 docs citations

62 times ranked 4171 citing authors

#	Article	IF	CITATIONS
1	Approaching the Dirac Point in High-Mobility Multilayer Epitaxial Graphene. Physical Review Letters, 2008, 101, 267601.	7.8	560
2	A four-coordinate cobalt(II) single-ion magnet with coercivity and a very high energy barrier. Nature Communications, 2016, 7, 10467.	12.8	374
3	Room temperature quantum coherence in a potential molecular qubit. Nature Communications, 2014, 5, 5304.	12.8	265
4	Direct measurement of dysprosium(III)˙˙˙dysprosium(III) interactions in a single-molecule magnet. Nature Communications, 2014, 5, 5243.	12.8	223
5	How Perfect Can Graphene Be?. Physical Review Letters, 2009, 103, 136403.	7.8	206
6	Observation of three-dimensional massless Kane fermions in a zinc-blende crystal. Nature Physics, 2014, 10, 233-238.	16.7	190
7	Comprehensive Spectroscopic Determination of the Crystal Field Splitting in an Erbium Single-Ion Magnet. Journal of the American Chemical Society, 2015, 137, 13114-13120.	13.7	95
8	Magnetostructural Correlations in Tetrairon(<scp>III</scp>) Singleâ€Molecule Magnets. Chemistry - A European Journal, 2009, 15, 6456-6467.	3.3	94
9	Condensation of a Nickel Tetranuclear Cubane into a Heptanuclear Single-Molecule Magnet. Inorganic Chemistry, 2012, 51, 6645-6654.	4.0	76
10	Measurement of Magnetic Exchange in Asymmetric Lanthanide Dimetallics: Toward a Transferable Theoretical Framework. Journal of the American Chemical Society, 2018, 140, 2504-2513.	13.7	73
11	Liquid state DNP of water at 9.2 T: an experimental access to saturation. Physical Chemistry Chemical Physics, 2013, 15, 6049.	2.8	71
12	Multitechnique investigation of Dy ₃ – implications for coupled lanthanide clusters. Chemical Science, 2016, 7, 4347-4354.	7.4	70
13	Ultra-broadband EPR spectroscopy in field and frequency domains. Physical Chemistry Chemical Physics, 2018, 20, 15528-15534.	2.8	49
14	Interfacing a Potential Purely Organic Molecular Quantum Bit with a Real-Life Surface. ACS Applied Materials & Samp; Interfaces, 2019, 11, 1571-1578.	8.0	48
15	Magnetic Bistability of Isolated Giantâ€Spin Centers in a Diamagnetic Crystalline Matrix. Chemistry - A European Journal, 2012, 18, 3390-3398.	3.3	44
16	Redoxâ€Induced Spinâ€State Switching and Mixed Valency in Quinonoidâ€Bridged Dicobalt Complexes. Chemistry - A European Journal, 2014, 20, 3475-3486.	3.3	44
17	Field-induced slow relaxation of magnetization in a pentacoordinate Co(ii) compound [Co(phen)(DMSO)Cl2]. Dalton Transactions, 2015, 44, 15014-15021.	3.3	40
18	High-field liquid state NMR hyperpolarization: a combined DNP/NMRD approach. Physical Chemistry Chemical Physics, 2014, 16, 18781-18787.	2.8	39

#	Article	IF	CITATIONS
19	Structure, Magnetic Properties, Polarized Neutron Diffraction, and Theoretical Study of a Copper(II) Cubane. Chemistry - A European Journal, 2008, 14, 9540-9548.	3.3	32
20	Bimetallic Mn ^{III} â€"Fe ^{II} hybrid complexes formed by a functionalized Mn ^{III} : observation of a field-induced slow relaxation of magnetization in the Mn ^{III} centres and a photoinduced spin-crossover in the Fe ^{II} centres. Journal of Materials Chemistry C, 2015, 3, 7936-7945.	5.5	30
21	MagneticÂAnisotropyÂandÂFieldâ€inducedÂSlow RelaxationÂofÂMagnetizationÂinÂTetracoordinate Coll CompoundÂ[Co(CH3â€im)2Cl2]. Materials, 2017, 10, 249.	2.9	27
22	Magnetic and optical bistability in tetrairon(iii) single molecule magnets functionalized with azobenzene groups. Dalton Transactions, 2012, 41, 8368.	3.3	26
23	Cyclotron Motion in the Vicinity of a Lifshitz Transition in Graphite. Physical Review Letters, 2012, 108, 017602.	7.8	25
24	Phosphoreneâ€"an emerging two-dimensional material: recent advances in synthesis, functionalization, and applications. 2D Materials, 2022, 9, 032001.	4.4	25
25	A Mn(<scp>iii</scp>) single ion magnet with tridentate Schiff-base ligands. Dalton Transactions, 2016, 45, 12301-12307.	3.3	22
26	The solvent effect in an axially symmetric Fe ^{III} ₄ single-molecule magnet. Chemical Communications, 2014, 50, 15090-15093.	4.1	21
27	Magnetic and HFEPR Studies of Exchange Coupling in a Series of \hat{l} 4-Cl Dicobalt Complexes. Inorganic Chemistry, 2017, 56, 2417-2425.	4.0	20
28	Multiple Bistability in Quinonoid-Bridged Diiron(II) Complexes: Influence of Bridge Symmetry on Bistable Properties. Inorganic Chemistry, 2016, 55, 11944-11953.	4.0	18
29	Structural, magnetic, redox and theoretical characterization of seven-coordinate first-row transition metal complexes with a macrocyclic ligand containing two benzimidazolyl <i>N</i> -pendant arms. Dalton Transactions, 2020, 49, 4425-4440.	3.3	17
30	Iron(II), Cobalt(II), and Nickel(II) Complexes of Bis(sulfonamido)benzenes: Redox Properties, Large Zero-Field Splittings, and Single-Ion Magnets. Inorganic Chemistry, 2021, 60, 2953-2963.	4.0	17
31	New Selective Synthesis of Dithiaboroles as a Viable Pathway to Functionalized Benzenedithiolenes and Their Complexes. Inorganic Chemistry, 2016, 55, 6186-6194.	4.0	16
32	A Dicobalt Complex with an Unsymmetrical Quinonoid Bridge Isolated in Three Units of Charge: A Combined Structural, (Spectro)electrochemical, Magnetic and Spectroscopic Study. Chemistry - A European Journal, 2016, 22, 13884-13893.	3.3	15
33	Deposition of Tetracoordinate Co(II) Complex with Chalcone Ligands on Graphene. Molecules, 2020, 25, 5021.	3.8	15
34	Lanthanideâ∈Based Metalâ€Organicâ€Frameworks for Proton Conduction and Magnetic Properties. European Journal of Inorganic Chemistry, 2021, 2021, 4610-4618.	2.0	15
35	Pentacoordinate cobalt(<scp>ii</scp>) single ion magnets with pendant alkyl chains: shall we go for chloride or bromide?. Inorganic Chemistry Frontiers, 2022, 9, 1179-1194.	6.0	15
36	Molecular simulations for dynamic nuclear polarization in liquids: a case study of TEMPOL in acetone and DMSO. Physical Chemistry Chemical Physics, 2015, 17, 6618-6628.	2.8	14

#	Article	IF	CITATIONS
37	New Cavity Design for Broad-Band Quasi-Optical HF-EPR Spectroscopy. Applied Magnetic Resonance, 2010, 37, 833-843.	1.2	12
38	Multi-frequency rapid-scan HFEPR. Journal of Magnetic Resonance, 2018, 296, 138-142.	2.1	12
39	Mutation Analysis Ion Channel Genes Ventricular Fibrillation Survivors with Coronary Artery Disease. PACE - Pacing and Clinical Electrophysiology, 2011, 34, 742-749.	1.2	11
40	Elementary excitations in single-chain magnets. Physical Review B, 2017, 96, .	3.2	11
41	Co(<scp>ii</scp>)-Based single-ion magnets with 1,1′-ferrocenediyl-bis(diphenylphosphine) metalloligands. Dalton Transactions, 2020, 49, 11697-11707.	3.3	11
42	Nanostructured graphene for nanoscale electron paramagnetic resonance spectroscopy. JPhys Materials, 2020, 3, 014013.	4.2	11
43	Torque-detected ESR of a tetrairon(III) single molecule magnet. Journal of Magnetic Resonance, 2012, 223, 55-60.	2.1	10
44	Probing bistability in Fe ^{II} and Co ^{II} complexes with an unsymmetrically substituted quinonoid ligand. Dalton Transactions, 2016, 45, 8394-8403.	3.3	10
45	Control of Complex Formation through Peripheral Substituents in Click-Tripodal Ligands: Structural Diversity in Homo- and Heterodinuclear Cobalt-Azido Complexes. Inorganic Chemistry, 2017, 56, 402-413.	4.0	10
46	CeO 2 and CeO 2: Pr nanocrystalline powders prepared by the polymeric precursor method: Yellow and red pigments with tunable color. Journal of the American Ceramic Society, 2020, 103, 6280-6288.	3.8	10
47	Probing the Intramolecular Metal-Selenoether Interaction in a Bis(iminosemiquinone)copper(II) Compound. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1621-1627.	1.2	9
48	A graphene-based hybrid material with quantum bits prepared by the double Langmuir–Schaefer method. RSC Advances, 2019, 9, 24066-24073.	3.6	9
49	Thin film properties and stability of a potential molecular quantum bit based on copper(<scp>ii</scp>). Journal of Materials Chemistry C, 2018, 6, 8028-8034.	5.5	8
50	Sample Holders for Sub-THz Electron Spin Resonance Spectroscopy. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-12.	4.7	8
51	Terahertz electron paramagnetic resonance generalized spectroscopic ellipsometry: The magnetic response of the nitrogen defect in 4H-SiC. Applied Physics Letters, 2022, 120, .	3.3	8
52	Infrared magneto-spectroscopy of two-dimensional and three-dimensional massless fermions: A comparison. Journal of Applied Physics, 2015, 117, 112803.	2.5	7
53	Publisher's Note: How Perfect Can Graphene Be? [Phys. Rev. Lett.103, 136403 (2009)]. Physical Review Letters, 2009, 103, .	7.8	6
54	High-frequency EPR: current state and perspectives. Electron Paramagnetic Resonance, 2020, , 214-252.	0.2	6

#	Article	IF	CITATIONS
55	Weak antiferromagnetic interaction in Cu(ii) complex with semi-coordination exchange pathway. Polyhedron, 2022, 223, 115962.	2.2	6
56	Torque-Detected Electron Spin Resonance as a Tool to Investigate Magnetic Anisotropy in Molecular Nanomagnets. Magnetochemistry, 2016, 2, 25.	2.4	5
57	Magneto-optical investigations of molecular nanomagnet monolayers. Dalton Transactions, 2016, 45, 7555-7558.	3.3	5
58	Multifrequency EPR, SQUID, and DFT Study of Cupric Ions and Their Magnetic Coupling in the Metal–Organic Framework Compound _{â^ž} ³ [Cu(prz–trz–ia)]. Journal of Physical Chemistry C, 2018, 122, 26642-26651.	3.1	5
59	Contactless millimeter wave method for quality assessment of large area graphene. 2D Materials, 2019, 6, 035028.	4.4	5
60	Rapid scan ESR: A versatile tool for the spin relaxation studies at (sub)THz frequencies. Applied Physics Letters, 2022, 120, .	3.3	4
61	Simulation of nitrogen nuclear spin magnetization of liquid solved nitroxides. Physical Chemistry Chemical Physics, 2021, 23, 17310-17322.	2.8	2
62	Reply to "Comment on an article by Gonzaga et al . J Am Ceram Soc. 2020;103:6280â€6288― Journal of the American Ceramic Society, 2021, 104, 4272-4273.	3.8	0