Hidekazu Tanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10029572/publications.pdf

Version: 2024-02-01

186265 197818 2,814 106 28 49 citations h-index g-index papers 106 106 106 2706 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Giant Electric Field Modulation of Double Exchange Ferromagnetism at Room Temperature in the Perovskite Manganite/Titanatepâ^'nJunction. Physical Review Letters, 2001, 88, 027204.	7.8	322
2	Strain effect and the phase diagram ofLa1â^²xBaxMnO3thin films. Physical Review B, 2001, 64, .	3.2	189
3	Multistate Memory Devices Based on Freeâ€standing VO ₂ /TiO ₂ Microstructures Driven by Joule Selfâ€Heating. Advanced Materials, 2012, 24, 2929-2934.	21.0	156
4	Anomalous strain effect inLa0.8Ba0.2MnO3epitaxial thin film: Role of the orbital degree of freedom in stabilizing ferromagnetism. Physical Review B, 2001, 64, .	3.2	105
5	Preparation of highly conductive Mn-doped Fe3O4 thin films with spin polarization at room temperature using a pulsed-laser deposition technique. Applied Physics Letters, 2005, 86, 222504.	3.3	92
6	Fe3â^xZnxO4 thin film as tunable high Curie temperature ferromagnetic semiconductor. Applied Physics Letters, 2006, 89, 242507.	3.3	84
7	Photocarrier injection effect on double exchange ferromagnetism in (La, Sr)MnO3/SrTiO3 heterostructure. Applied Physics Letters, 2000, 76, 3245-3247.	3.3	83
8	Electronic structures of Fe3â^xMxO4(M=Mn,Zn) spinel oxide thin films investigated by x-ray photoemission spectroscopy and x-ray magnetic circular dichroism. Physical Review B, 2007, 76, .	3.2	83
9	Electrical-field control of metal–insulator transition at room temperature in Pb(Zr0.2Ti0.8)O3/La1ⰒxBaxMnO3 field-effect transistor. Applied Physics Letters, 2003, 83, 4860-4862.	3.3	81
10	Interface effect on metal-insulator transition of strained vanadium dioxide ultrathin films. Journal of Applied Physics, 2007, 101, 026103.	2.5	77
11	Rectifying characteristic in all-perovskite oxide film p-n junction with room temperature ferromagnetism. Applied Physics Letters, 2002, 80, 4378-4380.	3.3	70
12	Electric control of room temperature ferromagnetism in a Pb(Zr0.2Ti0.8)O3â^•La0.85Ba0.15MnO3 field-effect transistor. Applied Physics Letters, 2006, 89, 242506.	3.3	61
13	The Control of Cluster-Glass Transition Temperature in Spinel-Type ZnFe2O4-δThin Film. Japanese Journal of Applied Physics, 2001, 40, L545-L547.	1.5	51
14	Metal-insulator transition and ferromagnetism phenomena inLa0.7Ce0.3MnO3thin films: Formation of Ce-rich nanoclusters. Physical Review B, 2004, 70, .	3.2	45
15	Programmable Mechanical Resonances in MEMS by Localized Joule Heating of Phase Change Materials. Advanced Materials, 2013, 25, 6430-6435.	21.0	44
16	Electronic structure of strained(La0.85Ba0.15)MnO3thin films with room-temperature ferromagnetism investigated by hard x-ray photoemission spectroscopy. Physical Review B, 2006, 73, .	3.2	40
17	Metal-insulator transition with multiple micro-scaled avalanches in VO2 thin film on TiO2(001) substrates. Applied Physics Letters, 2012, 100, 173112.	3.3	38
18	Fractal Nature of Metallic and Insulating Domain Configurations in a VO2 Thin Film Revealed by Kelvin Probe Force Microscopy. Scientific Reports, 2015, 5, 10417.	3.3	38

#	Article	IF	CITATIONS
19	Dependence of carrier doping level on the photo control of (La, Sr)MnO3/SrTiO3 functional heterojunction. Journal of Applied Physics, 2001, 90, 4578-4582.	2.5	33
20	Digitalized magnetoresistance observed in (La,Pr,Ca)MnO3 nanochannel structures. Applied Physics Letters, 2006, 89, 253121.	3.3	33
21	Photocurable Silsesquioxane-Based Formulations as Versatile Resins for Nanoimprint Lithography. Langmuir, 2010, 26, 14915-14922.	3.5	33
22	Filling-controlled Mott transition in W-doped VO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> , Physical Review B, 2012, 85, .	3.2	33
23	strained <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathMt"><mml:msub><mml:mi mathvariant="normal">VO<mml:mn>2</mml:mn></mml:mi </mml:msub></mml:math> thin films on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathMt"><mml:msub><mml:mi mathvariant="normal">TiO<mml:mn>2</mml:mn></mml:mi </mml:msub></mml:math> (001). Physical	3.2	32
24	Review B. 2014, 90 Selective High-Frequency Mechanical Actuation Driven by the VO2 Electronic Instability. Advanced Materials, 2017, 29, 1701618.	21.0	32
25	Nanoscale observation of room-temperature ferromagnetism on ultrathin (La,Ba)MnO3 films. Applied Physics Letters, 2003, 83, 1184-1186.	3.3	31
26	Direct observation of giant metallic domain evolution driven by electric bias in VO2 thin films on TiO2(001) substrate. Applied Physics Letters, 2012, 101, .	3.3	31
27	Beyond electrostatic modification: design and discovery of functional oxide phases via ionic-electronic doping. Advances in Physics: X, 2019, 4, 1523686.	4.1	31
28	Electrochemical gating-induced reversible and drastic resistance switching in VO2 nanowires. Scientific Reports, 2015, 5, 17080.	3.3	29
29	Gate-Tunable Thermal Metalâ€"Insulator Transition in VO ₂ Monolithically Integrated into a WSe ₂ Field-Effect Transistor. ACS Applied Materials & Interfaces, 2019, 11, 3224-3230.	8.0	29
30	Hall effect in strainedLaO.85BaO.15MnO3thin films. Physical Review B, 2005, 71, .	3.2	28
31	La0.7Ce0.3MnO3 epitaxial films fabricated by a pulsed laser deposition method. Solid State Communications, 2004, 129, 785-790.	1.9	27
32	Controlled Fabrication of Epitaxial (Fe,Mn) < sub > 3 < /sub > O < sub > 4 < /sub > Artificial Nanowire Structures and their Electric and Magnetic Properties. Nano Letters, 2009, 9, 1962-1966.	9.1	23
33	Atomic force microscope lithography in perovskite manganite La0.8Ba0.2MnO3 films. Journal of Applied Physics, 2004, 95, 7091-7093.	2.5	22
34	Electronic Structure of W-Doped VO ₂ Thin Films with Giant Metal–Insulator Transition Investigated by Hard X-ray Core-Level Photoemission Spectroscopy. Applied Physics Express, 2010, 3, 063201.	2.4	22
35	High Temperature-Coefficient of Resistance at Room Temperature in W-Doped VO ₂ Thin Films on Al ₂ O ₃ Substrate and Their Thickness Dependence. Japanese Journal of Applied Physics, 2011, 50, 055804.	1.5	22
36	Transport and magnetic properties of La0.9Ce0.1MnO3 thin films. Journal of Applied Physics, 2005, 97, 033905.	2.5	21

#	Article	IF	CITATIONS
37	Identifying valence band structure of transient phase in VO2thin film by hard x-ray photoemission. Physical Review B, 2011, 84, .	3.2	21
38	Enhancement of Spin Polarization in a Transition Metal Oxide Ferromagnetic Nanodot Diode. Nano Letters, 2011, 11, 343-347.	9.1	20
39	Tuning metal-insulator transition by one dimensional alignment of giant electronic domains in artificially size-controlled epitaxial VO2 wires. Applied Physics Letters, 2012, 101, 263111.	3.3	20
40	Nanowall-Shaped MgO Substrate with Flat (100) Sidesurface: A New Route to Three-Dimensional Functional Oxide Nanostructured Electronics. Japanese Journal of Applied Physics, 2013, 52, 015001.	1.5	20
41	Multistep metal insulator transition in VO2 nanowires on Al2O3 (0001) substrates. Applied Physics Letters, 2014, 104, .	3.3	20
42	Nanoscale modification of electrical and magnetic properties of Fe3O4 thin film by atomic force microscopy lithography. Applied Physics Letters, 2004, 85, 1811-1813.	3.3	19
43	Manipulation of metal-insulator transition characteristics in aspect ratio-controlled VO2 micro-scale thin films on TiO2 (001) substrates. Applied Physics Letters, 2013, 102, 153106.	3.3	18
44	Dual field effects in electrolyte-gated spinel ferrite: electrostatic carrier doping and redox reactions. Scientific Reports, 2014, 4, 5818.	3.3	18
45	Epitaxial Nanodot Arrays of Transitionâ€Metal Oxides Fabricated by Dry Deposition Combined with a Nanoimprintâ€Lithographyâ€Based Molybdenum Liftâ€Off Technique. Small, 2008, 4, 1661-1665.	10.0	17
46	Controlled fabrication of artificial ferromagnetic (Fe,Mn) ₃ O ₄ nanowall-wires by a three-dimensional nanotemplate pulsed laser deposition method. Nanotechnology, 2012, 23, 485308.	2.6	16
47	High Temperature-Coefficient of Resistance at Room Temperature in W-Doped VO ₂ Thin Films on Al ₂ O ₃ Substrate and Their Thickness Dependence. Japanese Journal of Applied Physics, 2011, 50, 055804.	1.5	16
48	ZnO Nanobox Luminescent Source Fabricated by Three-Dimensional Nanotemplate Pulsed-Laser Deposition. Applied Physics Express, 2012, 5, 125203.	2.4	15
49	Visualization of local phase transition behaviors near dislocations in epitaxial VO2/TiO2 thin films. Applied Physics Letters, 2015, 107, .	3.3	15
50	Electric field-induced transport modulation in VO ₂ FETs with high- <i>k</i> oxide/organic parylene-C hybrid gate dielectric. Applied Physics Letters, 2016, 108, 053503.	3.3	15
51	Catalytic Hydrogen Doping of NdNiO ₃ Thin Films under Electric Fields. ACS Applied Materials & Samp; Interfaces, 2020, 12, 54955-54962.	8.0	15
52	Fabrication of sub-50nm (La,Ba)MnO3 ferromagnetic nanochannels by atomic force microscopy lithography and their electrical properties. Applied Physics Letters, 2006, 89, 163113.	3.3	14
53	Nonvolatile Transport States in Ferrite Thin Films Induced by Fieldâ€Effect Involving Redox Processes. Advanced Materials Interfaces, 2014, 1, 1300108.	3.7	14
54	Fabrication of three-dimensional epitaxial (Fe,Zn) ₃ O ₄ nanowall wire structures and their transport properties. Applied Physics Express, 2014, 7, 045201.	2.4	14

#	Article	IF	CITATIONS
55	Three-Dimensional Nanoconfinement Supports Verwey Transition in Fe ₃ O ₄ Nanowire at 10 nm Length Scale. Nano Letters, 2019, 19, 5003-5010.	9.1	14
56	Investigation of Statistical Metal-Insulator Transition Properties of Electronic Domains in Spatially Confined VO2 Nanostructure. Crystals, 2020, 10, 631.	2.2	14
57	Direct fabrication of integrated 3D epitaxial functional transition metal oxide nanostructures using extremely small hollow nanopillar nano-imprint metal masks. Nanotechnology, 2011, 22, 185306.	2.6	13
58	Enhanced electronic-transport modulation in single-crystalline VO2 nanowire-based solid-state field-effect transistors. Scientific Reports, 2017, 7, 17215.	3.3	13
59	Growth of vanadium dioxide thin films on hexagonal boron nitride flakes as transferrable substrates. Scientific Reports, 2019, 9, 2857.	3.3	13
60	Effects of Off-Stoichiometry in the Epitaxial NdNiO ₃ Film on the Suppression of Its Metal-Insulator-Transition Properties. ACS Applied Electronic Materials, 2019, 1, 2678-2683.	4.3	13
61	Nanoscale patterning of (La,Pr,Ca)MnO3 thin film using atomic force microscopy lithography and their electrical properties. Journal of Applied Physics, 2006, 100, 124316.	2.5	12
62	Preparation of ferroelectric field effect transistor based on sustainable strongly correlated (Fe,Zn)3O4 oxide semiconductor and their electrical transport properties. Applied Physics Letters, 2011, 98, 102506.	3.3	12
63	Epitaxial inversion on ferromagnetic (Fe,Zn)3O4 /ferroelectric BiFeO3 core-shell nanodot arrays using three dimensional nano-seeding assembly. Journal of Applied Physics, 2013, 113, .	2.5	12
64	Metal–insulator transition in free-standing VO2/TiO2 microstructures through low-power Joule heating. Applied Physics Express, 2014, 7, 023201.	2.4	12
65	Correlation between Ni Valence and Resistance Modulation on a SmNiO3 Chemical Transistor. ACS Applied Electronic Materials, 2019, 1, 82-87.	4.3	11
66	Structural and magnetic properties of Nd0.7Ce0.3MnO3 thin films. Journal of Applied Physics, 2006, 99, 053908.	2.5	10
67	3D-Architected and Integrated Metal Oxide Nanostructures and Beyond Produced by Three-Dimensional Nanotemplate Pulsed Laser Deposition. E-Journal of Surface Science and Nanotechnology, 2015, 13, 279-283.	0.4	10
68	Creation of atomically flat Si $\{111\}$ 7 \tilde{A} — 7 side-surfaces on a three-dimensionally-architected Si (110) substrate. Surface Science, 2016, 644, 86-90.	1.9	10
69	Single-step metal–insulator transition in thin film-based vanadium dioxide nanowires with a 20 nm electrode gap. Applied Physics Express, 2019, 12, 025003.	2.4	10
70	Barrier Formation at the Contacts of Vanadium Dioxide and Transition-Metal Dichalcogenides. ACS Applied Materials & Dic	8.0	9
71	Influence of thermal boundary conditions on the current-driven resistive transition in VO2 microbridges. Applied Physics Letters, 2015, 107, .	3.3	8
72	Methods of creating and observing atomically reconstructed vertical Si $\{100\}$, $\{110\}$, and $\{111\}$ side-surfaces. Applied Physics Express, 2016, 9, 085501.	2.4	8

#	Article	IF	CITATIONS
73	Direct observation for atomically flat and ordered vertical $\{111\}$ side-surfaces on three-dimensionally figured Si(110) substrate using scanning tunneling microscopy. Japanese Journal of Applied Physics, 2017, 56, 111301.	1.5	8
74	Enhancement of discrete changes in resistance in engineered VO ₂ heterointerface nanowall wire. Applied Physics Express, 2017, 10, 115001.	2.4	8
75	Ferromagnetic oxide Schottky diode of (Fe, Mn)3O4/Nb:SrTiO3 heterostructure with strongly correlated electrons. Solid State Communications, 2008, 147, 397-400.	1.9	7
76	Joule-heat-driven high-efficiency electronic-phase switching in freestanding VO ₂ /TiO ₂ nanowires. Applied Physics Express, 2017, 10, 033201.	2.4	7
77	Morphology of phase-separated VO2 films deposited on TiO2-(001) substrate. Materials Research Bulletin, 2018, 102, 289-293.	5.2	7
78	Unstrained Epitaxial Zn-Substituted Fe3O4Films for Ferromagnetic Field-Effect Transistors. Japanese Journal of Applied Physics, 2013, 52, 068002.	1.5	6
79	Artificial three dimensional oxide nanostructures for high performance correlated oxide nanoelectronics. Japanese Journal of Applied Physics, 2014, 53, 05FA10.	1.5	6
80	Discrimination between gate-induced electrostatic and electrochemical characteristics in insulator-to-metal transition of manganite thin films. Applied Physics Express, 2015, 8, 073201.	2.4	6
81	Research Update: Nanoscale electrochemical transistors in correlated oxides. APL Materials, 2017, 5, .	5.1	6
82	Enhancement of electronic-transport switching in single-crystal narrower VO2 nanowire channels through side-gate electric fields. Applied Physics Letters, 2018, 113, .	3.3	6
83	Impact of parylene-C thickness on performance of KTaO3 field-effect transistors with high- <i>k</i> oxide/parylene-C hybrid gate dielectric. Journal of Applied Physics, 2016, 119, .	2.5	5
84	Electric transport properties for three-dimensional angular-interconnects of Au wires crossing facet edges of atomically-flat Si{111} surfaces. Japanese Journal of Applied Physics, 2018, 57, 090303.	1.5	5
85	Formation of single-crystal VO ₂ thin films on MgO(110) substrates using ultrathin TiO ₂ buffer layers. Applied Physics Express, 2018, 11, 085503.	2.4	5
86	Controllable Strongly Electron-Correlated Properties of NdNiO ₃ Induced by Large-Area Protonation with Metalâ€"Acid Treatment. ACS Applied Electronic Materials, 2022, 4, 3495-3502.	4.3	5
87	Magnetic properties of the integrated (Fe, M)3O4 (M=Mn and Zn) nano-array structures in large area prepared by Nanoimprint lithography with Mo lift-off technique. Solid State Communications, 2009, 149, 729-733.	1.9	4
88	Self-Assembled Growth of Spinel (Fe,Zn)\$_{3}\$O\$_{4}\$â€"Perovskite BiFeO\$_{3}\$ Nanocomposite Structures Using Pulsed Laser Deposition. Japanese Journal of Applied Physics, 2012, 51, 035504.	1.5	4
89	Epitaxial Growth of Oxide Films andÂNanostructures. , 2015, , 555-604.		4
90	Epitaxial crystallization of self-assembled ZnO–NiO nanopillar system. Applied Physics Express, 2017, 10, 075501.	2.4	4

#	Article	IF	CITATIONS
91	Nondeteriorating Verwey Transition in 50 nm Thick Fe ₃ O ₄ Films by Virtue of Atomically Flattened MgO Substrates: Implications for Magnetoresistive Devices. ACS Applied Nano Materials, 2021, 4, 12091-12097.	5. 0	4
92	Transport and magnetic properties of Ce-doped LaMnO3 thin films. Applied Surface Science, 2005, 244, 355-358.	6.1	3
93	Fabrication of Single Crystalline (La,Ba)MnO ₃ Nanodot Array by Mo/SiO _{<i>x</i>} Lift-Off Technique. Japanese Journal of Applied Physics, 2009, 48, 116511.	1.5	3
94	Improving resistance change with temperature and thermal stability in Fe ₃ O ₄ films for high-temperature resistors. Applied Physics Express, 2019, 12, 011003.	2.4	3
95	Spatial Analytical Surface Structure Mapping for Three-dimensional Micro-shaped Si by Micro-beam Reflection High-energy Electron Diffraction. E-Journal of Surface Science and Nanotechnology, 2021, 19, 13-19.	0.4	3
96	Step-like resistance changes in VO2 thin films grown on hexagonal boron nitride with <i>in situ</i> optically observable metallic domains. Applied Physics Letters, 2022, 120, .	3.3	3
97	Investigation on Ce-doped LnMnO3 (, Nd) thin films by laser molecular beam epitaxy method. Vacuum, 2006, 80, 780-782.	3.5	2
98	Arrangement of self-assembled ZnO-NiO nanostructures using topographical templates towards oxide directed self-assembly. AIP Advances, 2018, 8, 115029.	1.3	2
99	Atomically Architected Silicon Pyramid Single-Crystalline Structure Supporting Epitaxial Material Growth and Characteristic Magnetism. Crystal Growth and Design, 2021, 21, 946-953.	3.0	2
100	Prominent Verway Transition of Fe3O4 Thin Films Grown on Transferable Hexagonal Boron Nitride. ACS Applied Electronic Materials, 2021, 3, 5031-5036.	4.3	2
101	Electrical switching to probe complex phases in a frustrated manganite. Solid State Communications, 2014, 187, 64-67.	1.9	1
102	Surface analysis of self-assembled ZnO NiO nanostructures. Surface Science, 2019, 679, 6-10.	1.9	1
103	Self-assembled Nanocomposite Oxide Films. , 2017, , 139-163.		O
104	Electrostatic carrier doping of charge-ordered YbFe ₂ O ₄ thin films using ionic liquids. Applied Physics Express, 2021, 14, 083001.	2.4	0
105	Self-Assembled Growth of Spinel (Fe,Zn)3O4–Perovskite BiFeO3Nanocomposite Structures Using Pulsed Laser Deposition. Japanese Journal of Applied Physics, 2012, 51, 035504.	1.5	0
106	Statistical metal–insulator transition properties of electric domains in NdNiO ₃ nanowires. Japanese Journal of Applied Physics, 2022, 61, SM1005.	1.5	0