
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1002851/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Solution processable small molecules for organic light-emitting diodes. Journal of Materials<br>Chemistry, 2010, 20, 6392.                                                                                                                 | 6.7  | 555       |
| 2  | Highâ€Efficiency Fluorescent Organic Lightâ€Emitting Devices Using Sensitizing Hosts with a Small<br>Singlet–Triplet Exchange Energy. Advanced Materials, 2014, 26, 5050-5055.                                                             | 21.0 | 496       |
| 3  | Sterically shielded blue thermally activated delayed fluorescence emitters with improved efficiency and stability. Materials Horizons, 2016, 3, 145-151.                                                                                   | 12.2 | 430       |
| 4  | Strategies to Design Bipolar Small Molecules for OLEDs: Donorâ€Acceptor Structure and<br>Nonâ€Donorâ€Acceptor Structure. Advanced Materials, 2011, 23, 1137-1144.                                                                          | 21.0 | 399       |
| 5  | Recent progress in solution processable TADF materials for organic light-emitting diodes. Journal of<br>Materials Chemistry C, 2018, 6, 5577-5596.                                                                                         | 5.5  | 370       |
| 6  | Multiâ€Resonance Induced Thermally Activated Delayed Fluorophores for Narrowband Green OLEDs.<br>Angewandte Chemie - International Edition, 2019, 58, 16912-16917.                                                                         | 13.8 | 356       |
| 7  | Stable Enantiomers Displaying Thermally Activated Delayed Fluorescence: Efficient OLEDs with<br>Circularly Polarized Electroluminescence. Angewandte Chemie - International Edition, 2018, 57,<br>2889-2893.                               | 13.8 | 350       |
| 8  | Toward Highly Efficient Solidâ€State White Lightâ€Emitting Electrochemical Cells: Blueâ€Green to Red<br>Emitting Cationic Iridium Complexes with Imidazoleâ€Type Ancillary Ligands. Advanced Functional<br>Materials, 2009, 19, 2950-2960. | 14.9 | 298       |
| 9  | Solid-state light-emitting electrochemical cells based on ionic iridium(iii) complexes. Journal of<br>Materials Chemistry, 2012, 22, 4206.                                                                                                 | 6.7  | 284       |
| 10 | Blueâ€Emitting Cationic Iridium Complexes with 2â€(1 <i>H</i> â€Pyrazolâ€1â€yl)pyridine as the Ancillary Ligand<br>for Efficient Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2008, 18, 2123-2131.                | 14.9 | 276       |
| 11 | Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nature<br>Communications, 2021, 12, 361.                                                                                                    | 12.8 | 268       |
| 12 | Multiâ€Resonance Deepâ€Red Emitters with Shallow Potentialâ€Energy Surfaces to Surpass Energyâ€Gap<br>Law**. Angewandte Chemie - International Edition, 2021, 60, 20498-20503.                                                             | 13.8 | 259       |
| 13 | Efficient and Stable Deepâ€Blue Fluorescent Organic Lightâ€Emitting Diodes Employing a Sensitizer with<br>Fast Triplet Upconversion. Advanced Materials, 2020, 32, e1908355.                                                               | 21.0 | 242       |
| 14 | Recent Progress in Ionic Iridium(III) Complexes for Organic Electronic Devices. Advanced Materials, 2017, 29, 1603253.                                                                                                                     | 21.0 | 224       |
| 15 | Versatile Indolocarbazoleâ€Isomer Derivatives as Highly Emissive Emitters and Ideal Hosts for Thermally<br>Activated Delayed Fluorescent OLEDs with Alleviated Efficiency Rollâ€Off. Advanced Materials, 2018, 30,<br>1705406.             | 21.0 | 217       |
| 16 | Achieving Pure Green Electroluminescence with CIEy of 0.69 and EQE of 28.2% from an Azaâ€Fused<br>Multiâ€Resonance Emitter. Angewandte Chemie - International Edition, 2020, 59, 17499-17503.                                              | 13.8 | 211       |
| 17 | Highly efficient blue thermally activated delayed fluorescent OLEDs with record-low driving voltages<br>utilizing high triplet energy hosts with small singlet–triplet splittings. Chemical Science, 2016, 7,<br>3355-3363.                | 7.4  | 195       |
| 18 | Axially Chiral TADFâ€Active Enantiomers Designed for Efficient Blue Circularly Polarized<br>Electroluminescence. Angewandte Chemie - International Edition, 2020, 59, 3500-3504.                                                           | 13.8 | 181       |

| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Blocking Energyâ€Loss Pathways for Ideal Fluorescent Organic Lightâ€Emitting Diodes with Thermally<br>Activated Delayed Fluorescent Sensitizers. Advanced Materials, 2018, 30, 1705250.                                                                      | 21.0 | 177       |
| 20 | Highly efficient hybrid warm white organic light-emitting diodes using a blue thermally activated<br>delayed fluorescence emitter: exploiting the external heavy-atom effect. Light: Science and<br>Applications, 2015, 4, e232-e232.                        | 16.6 | 171       |
| 21 | Highly Efficient Blue-Green and White Light-Emitting Electrochemical Cells Based on a Cationic<br>Iridium Complex with a Bulky Side Group. Chemistry of Materials, 2010, 22, 3535-3542.                                                                      | 6.7  | 166       |
| 22 | Approaching Nearly 40% External Quantum Efficiency in Organic Light Emitting Diodes Utilizing a<br>Green Thermally Activated Delayed Fluorescence Emitter with an Extended Linear<br>Donor–Acceptor–Donor Structure. Advanced Materials, 2021, 33, e2103293. | 21.0 | 143       |
| 23 | Molecular Understanding of the Chemical Stability of Organic Materials for OLEDs: A Comparative<br>Study on Sulfonyl, Phosphine-Oxide, and Carbonyl-Containing Host Materials. Journal of Physical<br>Chemistry C, 2014, 118, 7569-7578.                     | 3.1  | 142       |
| 24 | Sterically Wrapped Multiple Resonance Fluorophors for Suppression of Concentration Quenching and Spectrum Broadening. Angewandte Chemie - International Edition, 2022, 61, .                                                                                 | 13.8 | 140       |
| 25 | Homoleptic Facial Ir(III) Complexes via Facile Synthesis for High-Efficiency and Low-Roll-Off<br>Near-Infrared Organic Light-Emitting Diodes over 750 nm. Chemistry of Materials, 2017, 29, 4775-4782.                                                       | 6.7  | 138       |
| 26 | Highly efficient and color-stable hybrid warm white organic light-emitting diodes using a blue<br>material with thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2014, 2,<br>8191-8197.                                           | 5.5  | 131       |
| 27 | Emerging Selfâ€Emissive Technologies for Flexible Displays. Advanced Materials, 2020, 32, e1902391.                                                                                                                                                          | 21.0 | 131       |
| 28 | Highly Efficient Simplified Single-Emitting-Layer Hybrid WOLEDs with Low Roll-off and Good Color<br>Stability through Enhanced FA¶rster Energy Transfer. ACS Applied Materials & Interfaces, 2015, 7,<br>28693-28700.                                        | 8.0  | 128       |
| 29 | Label-free electrochemical DNA biosensor array for simultaneous detection of the HIV-1 and HIV-2 oligonucleotides incorporating different hairpin-DNA probes and redox indicator. Biosensors and Bioelectronics, 2010, 25, 1088-1094.                        | 10.1 | 124       |
| 30 | High-triplet-energy tri-carbazole derivatives as host materials for efficient solution-processed blue phosphorescent devices. Journal of Materials Chemistry, 2011, 21, 4918.                                                                                | 6.7  | 122       |
| 31 | Towards High Efficiency and Low Rollâ€Off Orange Electrophosphorescent Devices by Fine Tuning<br>Singlet and Triplet Energies of Bipolar Hosts Based on Indolocarbazole/1, 3, 5â€Triazine Hybrids.<br>Advanced Functional Materials, 2014, 24, 3551-3561.    | 14.9 | 117       |
| 32 | Understanding and Manipulating the Interplay of Wideâ€Energyâ€Gap Host and TADF Sensitizer in<br>Highâ€Performance Fluorescence OLEDs. Advanced Materials, 2019, 31, e1901923.                                                                               | 21.0 | 116       |
| 33 | High Throughput Sequencing Identifies MicroRNAs Mediating α-Synuclein Toxicity by Targeting<br>Neuroactive-Ligand Receptor Interaction Pathway in Early Stage of Drosophila Parkinson's Disease<br>Model. PLoS ONE, 2015, 10, e0137432.                      | 2.5  | 113       |
| 34 | Simultaneous Enhancement of Efficiency and Stability of Phosphorescent OLEDs Based on Efficient<br>Förster Energy Transfer from Interface Exciplex. ACS Applied Materials & Interfaces, 2016, 8,<br>3825-3832.                                               | 8.0  | 112       |
| 35 | Ultrahighâ€Efficiency Green PHOLEDs with a Voltage under 3 V and a Power Efficiency of Nearly 110 lm<br>W <sup>â^'1</sup> at Luminance of 10 000 cd m <sup>â^'2</sup> . Advanced Materials, 2017, 29, 1702847.                                               | 21.0 | 112       |
| 36 | Highly Efficient Full-Color Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes:<br>Extremely Low Efficiency Roll-Off Utilizing a Host with Small Singlet–Triplet Splitting. ACS Applied<br>Materials & Interfaces, 2017, 9, 4769-4777.    | 8.0  | 107       |

| #  | Article                                                                                                                                                                                                                                         | IF      | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|
| 37 | Indolo[3,2,1â€ <i>jk</i> ]carbazole Embedded Multipleâ€Resonance Fluorophors for Narrowband Deepâ€blue<br>Electroluminescence with EQEâ‰^34.7 % and ClE <sub>y</sub> â‰^0.085. Angewandte Chemie - Internati<br>Edition, 2021, 60, 12269-12273. | onal3.8 | 106       |
| 38 | Elucidation of the electron injection mechanism of evaporated cesium carbonate cathode interlayer for organic light-emitting diodes. Applied Physics Letters, 2007, 90, 012119.                                                                 | 3.3     | 101       |
| 39 | Simultaneously Enhanced Reverse Intersystem Crossing and Radiative Decay in Thermally Activated<br>Delayed Fluorophors with Multiple Throughâ€space Charge Transfers. Angewandte Chemie -<br>International Edition, 2021, 60, 23771-23776.      | 13.8    | 100       |
| 40 | High performance low-voltage organic phototransistors: interface modification and the tuning of electrical, photosensitive and memory properties. Journal of Materials Chemistry, 2012, 22, 11836.                                              | 6.7     | 99        |
| 41 | Enhanced stability of blue-green light-emitting electrochemical cells based on a cationic iridium<br>complex with 2-(1-phenyl-1H-pyrazol-3-yl)pyridine as the ancillary ligand. Chemical Communications,<br>2011, 47, 6467.                     | 4.1     | 98        |
| 42 | Flexible Organic Tribotronic Transistor Memory for a Visible and Wearable Touch Monitoring System.<br>Advanced Materials, 2016, 28, 106-110.                                                                                                    | 21.0    | 98        |
| 43 | Fusion of Multiâ€Resonance Fragment with Conventional Polycyclic Aromatic Hydrocarbon for Nearly<br>BT.2020 Green Emission. Angewandte Chemie - International Edition, 2022, 61, .                                                              | 13.8    | 95        |
| 44 | Controlling the Recombination Zone of White Organic Lightâ€Emitting Diodes with Extremely Long<br>Lifetimes. Advanced Functional Materials, 2011, 21, 3540-3545.                                                                                | 14.9    | 94        |
| 45 | Efficient n-type dopants with extremely low doping ratios for high performance inverted perovskite solar cells. Energy and Environmental Science, 2016, 9, 3424-3428.                                                                           | 30.8    | 94        |
| 46 | A Pyridineâ€Containing Anthracene Derivative with High Electron and Hole Mobilities for Highly<br>Efficient and Stable Fluorescent Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2011,<br>21, 1881-1886.                       | 14.9    | 93        |
| 47 | Heavy Atom Effect of Bromine Significantly Enhances Exciton Utilization of Delayed Fluorescence<br>Luminogens. ACS Applied Materials & Interfaces, 2018, 10, 17327-17334.                                                                       | 8.0     | 91        |
| 48 | Multiâ€Resonance Induced Thermally Activated Delayed Fluorophores for Narrowband Green OLEDs.<br>Angewandte Chemie, 2019, 131, 17068-17073.                                                                                                     | 2.0     | 91        |
| 49 | Towards ideal electrophosphorescent devices with low dopant concentrations: the key role of triplet up-conversion. Journal of Materials Chemistry C, 2014, 2, 8983-8989.                                                                        | 5.5     | 90        |
| 50 | High-efficiency and low efficiency roll-off near-infrared fluorescent OLEDs through triplet fusion.<br>Chemical Science, 2016, 7, 2888-2895.                                                                                                    | 7.4     | 88        |
| 51 | High-efficiency near-infrared organic light-emitting devices based on an iridium complex with negligible efficiency roll-off. Journal of Materials Chemistry C, 2013, 1, 6446.                                                                  | 5.5     | 87        |
| 52 | Extremely low driving voltage electrophosphorescent green organic light-emitting diodes based on a<br>host material with small singlet–triplet exchange energy without p- or n-doping layer. Organic<br>Electronics, 2013, 14, 260-266.         | 2.6     | 85        |
| 53 | Highly-efficient blue electroluminescence based on two emitter isomers. Applied Physics Letters, 2004,<br>84, 1513-1515.                                                                                                                        | 3.3     | 81        |
| 54 | Deep-blue electroluminescence from nondoped and doped organic light-emitting diodes (OLEDs) based on a new monoaza[6]helicene. RSC Advances, 2015, 5, 75-84.                                                                                    | 3.6     | 81        |

| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Efficient single layer solution-processed blue-emitting electrophosphorescent devices based on a small-molecule host. Applied Physics Letters, 2008, 92, 263301.                                                                                        | 3.3  | 79        |
| 56 | Achilles Heels of Phosphine Oxide Materials for OLEDs: Chemical Stability and Degradation Mechanism<br>of a Bipolar Phosphine Oxide/Carbazole Hybrid Host Material. Journal of Physical Chemistry C, 2012,<br>116, 19451-19457.                         | 3.1  | 79        |
| 57 | One-Dimensional All-Inorganic K <sub>2</sub> CuBr <sub>3</sub> with Violet Emission as Efficient<br>X-ray Scintillators. ACS Applied Electronic Materials, 2020, 2, 2242-2249.                                                                          | 4.3  | 77        |
| 58 | High-efficiency orange to near-infrared emissions from bis-cyclometalated iridium complexes with phenyl-benzoquinoline isomers as ligands. Journal of Materials Chemistry, 2009, 19, 6573.                                                              | 6.7  | 76        |
| 59 | Highly efficient solution-processed blue-green to red and white light-emitting diodes using cationic iridium complexes as dopants. Organic Electronics, 2010, 11, 1185-1191.                                                                            | 2.6  | 76        |
| 60 | A ï€â€"D and ï€â€"A Exciplexâ€Forming Host for Highâ€Efficiency and Longâ€Lifetime Singleâ€Emissiveâ€Layer<br>Fluorescent White Organic Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e2004040.                                                 | 21.0 | 76        |
| 61 | Sterically Shielded Electron Transporting Material with Nearly 100% Internal Quantum Efficiency and<br>Long Lifetime for Thermally Activated Delayed Fluorescent and Phosphorescent OLEDs. ACS Applied<br>Materials & Interfaces, 2017, 9, 19040-19047. | 8.0  | 75        |
| 62 | Universal Trap Effect in Carrier Transport of Disordered Organic Semiconductors: Transition from Shallow Trapping to Deep Trapping. Journal of Physical Chemistry C, 2014, 118, 10651-10660.                                                            | 3.1  | 74        |
| 63 | Tough, stable and self-healing luminescent perovskite-polymer matrix applicable to all harsh aquatic environments. Nature Communications, 2022, 13, 1338.                                                                                               | 12.8 | 73        |
| 64 | Achieving Pure Green Electroluminescence with CIEy of 0.69 and EQE of 28.2% from an Azaâ€Fused<br>Multiâ€Resonance Emitter. Angewandte Chemie, 2020, 132, 17652-17656.                                                                                  | 2.0  | 72        |
| 65 | Novel star-shaped host materials for highly efficient solution-processed phosphorescent organic<br>light-emitting diodes. Journal of Materials Chemistry, 2010, 20, 6131.                                                                               | 6.7  | 71        |
| 66 | Modulation of Förster and Dexter Interactions in Singleâ€Emissiveâ€Layer Allâ€Fluorescent WOLEDs for<br>Improved Efficiency and Extended Lifetime. Advanced Functional Materials, 2020, 30, 1907083.                                                    | 14.9 | 70        |
| 67 | Highâ€stability organic redâ€light photodetector for narrowband applications. Laser and Photonics<br>Reviews, 2016, 10, 473-480.                                                                                                                        | 8.7  | 69        |
| 68 | Highâ€Performance Fluorescent Organic Lightâ€Emitting Diodes Utilizing an Asymmetric Anthracene<br>Derivative as an Electronâ€Transporting Material. Advanced Materials, 2018, 30, e1707590.                                                            | 21.0 | 68        |
| 69 | High-Brightness Perovskite Light-Emitting Diodes Based on FAPbBr <sub>3</sub> Nanocrystals with<br>Rationally Designed Aromatic Ligands. ACS Energy Letters, 2021, 6, 2395-2403.                                                                        | 17.4 | 67        |
| 70 | Impacts of Sn precursors on solution-processed amorphous zinc–tin oxide films and their transistors. RSC Advances, 2012, 2, 5307.                                                                                                                       | 3.6  | 66        |
| 71 | Synthesis, Characterization, and Photophysical and Electroluminescent Properties of Blue-Emitting<br>Cationic Iridium(III) Complexes Bearing Nonconjugated Ligands. Inorganic Chemistry, 2014, 53,<br>6596-6606.                                        | 4.0  | 66        |
| 72 | Bipolar Host with Multielectron Transport Benzimidazole Units for Low Operating Voltage and High<br>Power Efficiency Solution-Processed Phosphorescent OLEDs. ACS Applied Materials & Interfaces,<br>2015, 7, 7303-7314.                                | 8.0  | 60        |

| #  | Article                                                                                                                                                                                                                                                                               | IF          | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 73 | Strategically Modulating Carriers and Excitons for Efficient and Stable Ultrapureâ€Green Fluorescent<br>OLEDs with a Sterically Hindered BODIPY Dopant. Advanced Optical Materials, 2020, 8, 2000483.                                                                                 | 7.3         | 60        |
| 74 | Efficient solution-processed electrophosphorescent devices using ionic iridium complexes as the dopants. Organic Electronics, 2009, 10, 152-157.                                                                                                                                      | 2.6         | 59        |
| 75 | Bright single-active layer small-molecular organic light-emitting diodes with a polytetrafluoroethylene barrier. Applied Physics Letters, 2003, 82, 155-157.                                                                                                                          | 3.3         | 58        |
| 76 | Multiâ€Resonance Deepâ€Red Emitters with Shallow Potentialâ€Energy Surfaces to Surpass Energyâ€Gap<br>Law**. Angewandte Chemie, 2021, 133, 20661-20666.                                                                                                                               | 2.0         | 58        |
| 77 | Stable Enantiomers Displaying Thermally Activated Delayed Fluorescence: Efficient OLEDs with Circularly Polarized Electroluminescence. Angewandte Chemie, 2018, 130, 2939-2943.                                                                                                       | 2.0         | 57        |
| 78 | Star-shaped dendritic hosts based on carbazole moieties for highly efficient blue phosphorescent<br>OLEDs. Journal of Materials Chemistry, 2012, 22, 12016.                                                                                                                           | 6.7         | 56        |
| 79 | Accelerating Radiative Decay in Blue Throughâ€Space Charge Transfer Emitters by Minimizing the<br>Faceâ€ŧoâ€Face Donor–Acceptor Distances. Angewandte Chemie - International Edition, 2022, 61, .                                                                                     | 13.8        | 56        |
| 80 | Direct optical patterning of perovskite nanocrystals with ligand cross-linkers. Science Advances, 2022, 8, eabm8433.                                                                                                                                                                  | 10.3        | 54        |
| 81 | Increased phosphorescent quantum yields of cationic iridium( <scp>iii</scp> ) complexes by wisely controlling the counter anions. Chemical Communications, 2014, 50, 530-532.                                                                                                         | 4.1         | 51        |
| 82 | Colour-tunable asymmetric cyclometalated Pt( <scp>ii</scp> ) complexes and STM-assisted stability assessment of ancillary ligands for OLEDs. Journal of Materials Chemistry C, 2016, 4, 2560-2565.                                                                                    | 5.5         | 51        |
| 83 | New Insights into Tunable Volatility of Ionic Materials through Counterâ€Ion Control. Advanced<br>Functional Materials, 2016, 26, 3438-3445.                                                                                                                                          | 14.9        | 51        |
| 84 | IbSIMT1, a novel salt-induced methyltransferase gene from Ipomoea batatas, is involved in salt<br>tolerance. Plant Cell, Tissue and Organ Culture, 2015, 120, 701-715.                                                                                                                | 2.3         | 50        |
| 85 | Longâ€Lived and Highly Efficient TADFâ€PhOLED with "(A) <sub>n</sub> –D–(A) <sub>n</sub> ―Structu<br>Terpyridine Electronâ€Transporting Material. Advanced Functional Materials, 2018, 28, 1800429.                                                                                   | red<br>14.9 | 49        |
| 86 | High Performance Thermally Activated Delayed Fluorescence Sensitized Organic Lightâ€Emitting Diodes.<br>Chemical Record, 2019, 19, 1611-1623.                                                                                                                                         | 5.8         | 49        |
| 87 | Progress on Lightâ€Emitting Electrochemical Cells toward Blue Emission, High Efficiency, and Long<br>Lifetime. Advanced Functional Materials, 2020, 30, 1907156.                                                                                                                      | 14.9        | 49        |
| 88 | Highâ€Efficiency Nearâ€Infrared Fluorescent Organic Lightâ€Emitting Diodes with Small Efficiency Rollâ€Off:<br>A Combined Design from Emitters to Devices. Advanced Functional Materials, 2017, 27, 1703283.                                                                          | 14.9        | 48        |
| 89 | Review on photo- and electrical aging mechanisms for neutral excitons and ions in organic light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 803-820.                                                                                                                  | 5.5         | 48        |
| 90 | A Comparison Study of the Organic Small Molecular Thin Films Prepared by Solution Process and<br>Vacuum Deposition: Roughness, Hydrophilicity, Absorption, Photoluminescence, Density, Mobility, and<br>Electroluminescence. Journal of Physical Chemistry C, 2011, 115, 14278-14284. | 3.1         | 47        |

| #   | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Decolorization of Acid Orange II dye by peroxymonosulfate activated with magnetic<br>Fe <sub>3</sub> O <sub>4</sub> @C/Co nanocomposites. RSC Advances, 2015, 5, 76862-76874.                                                       | 3.6  | 47        |
| 92  | Unveiling the Role of Langevin and Trap-Assisted Recombination in Long Lifespan OLEDs Employing<br>Thermally Activated Delayed Fluorophores. ACS Applied Materials & Interfaces, 2019, 11, 1096-1108.                               | 8.0  | 47        |
| 93  | Enhancing spin-orbital coupling in deep-blue/blue TADF emitters by minimizing the distance from the heteroatoms in donors to acceptors. Chemical Engineering Journal, 2021, 420, 127591.                                            | 12.7 | 47        |
| 94  | TADF sensitization targets deep-blue. Nature Photonics, 2021, 15, 173-174.                                                                                                                                                          | 31.4 | 47        |
| 95  | Air Stable Organic Salt As an n-Type Dopant for Efficient and Stable Organic Light-Emitting Diodes. ACS<br>Applied Materials & Interfaces, 2015, 7, 6444-6450.                                                                      | 8.0  | 46        |
| 96  | A combinational molecular design to achieve highly efficient deep-blue electrofluorescence. Journal of Materials Chemistry C, 2018, 6, 745-753.                                                                                     | 5.5  | 45        |
| 97  | Charge Transport in Mixed Organic Disorder Semiconductors: Trapping, Scattering, and Effective Energetic Disorder. Journal of Physical Chemistry C, 2012, 116, 19748-19754.                                                         | 3.1  | 44        |
| 98  | Thermally Activated Delayed Fluorescent Materials Combining Intra- and Intermolecular Charge Transfers. ACS Applied Materials & Interfaces, 2019, 11, 7192-7198.                                                                    | 8.0  | 44        |
| 99  | Deep-blue organic light-emitting diodes based on a doublet d–f transition cerium(III) complex with<br>100% exciton utilization efficiency. Light: Science and Applications, 2020, 9, 157.                                           | 16.6 | 43        |
| 100 | Exploiting p-Type Delayed Fluorescence in Hybrid White OLEDs: Breaking the Trade-off between High<br>Device Efficiency and Long Lifetime. ACS Applied Materials & Interfaces, 2016, 8, 23197-23203.                                 | 8.0  | 42        |
| 101 | Making silver a stronger n-dopant than cesium via in situ coordination reaction for organic electronics. Nature Communications, 2019, 10, 866.                                                                                      | 12.8 | 42        |
| 102 | A new type of light-emitting naphtho[2,3-c][1,2,5]thiadiazole derivatives: synthesis, photophysical characterization and transporting properties. Journal of Materials Chemistry, 2008, 18, 806.                                    | 6.7  | 41        |
| 103 | Efficient nâ€Dopants and Their Roles in Organic Electronics. Advanced Optical Materials, 2018, 6,<br>1800536.                                                                                                                       | 7.3  | 41        |
| 104 | Pure red electroluminescence from a host material of binuclear gallium complex. Applied Physics<br>Letters, 2002, 81, 4913-4915.                                                                                                    | 3.3  | 40        |
| 105 | Exciplex System with Increased Donor–Acceptor Distance as the Sensitizing Host for Conventional<br>Fluorescent OLEDs with High Efficiency and Extremely Low Roll-Off. ACS Applied Materials &<br>Interfaces, 2019, 11, 22595-22602. | 8.0  | 40        |
| 106 | Triazolotriazine-based thermally activated delayed fluorescence materials for highly efficient fluorescent organic light-emitting diodes (TSF-OLEDs). Science Bulletin, 2021, 66, 441-448.                                          | 9.0  | 40        |
| 107 | Nitrogenâ€Embedded Multiâ€Resonance Heteroaromatics with Prolonged Homogeneous Hexatomic Rings.<br>Angewandte Chemie - International Edition, 2022, 61, .                                                                           | 13.8 | 40        |
| 108 | Highly Efficient and Stable Blue Organic Lightâ€Emitting Diodes based on Thermally Activated Delayed<br>Fluorophor with Donorâ€Voidâ€Acceptor Motif. Advanced Science, 2022, 9, e2106018.                                           | 11.2 | 40        |

| #   | Article                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Highly efficient and stable deep-blue OLEDs based on narrowband emitters featuring an orthogonal spiro-configured indolo[3,2,1- <i>de</i> ]acridine structure. Chemical Science, 2022, 13, 5622-5630.                                                               | 7.4  | 39        |
| 110 | Highly efficient blue-green organic light-emitting diodes achieved by controlling the anionic<br>migration of cationic iridium( <scp>iii</scp> ) complexes. Journal of Materials Chemistry C, 2016, 4,<br>5731-5738.                                                | 5.5  | 36        |
| 111 | Effects of <i>ortho</i> -Linkages on the Molecular Stability of Organic Light-Emitting Diode Materials.<br>Chemistry of Materials, 2018, 30, 8771-8781.                                                                                                             | 6.7  | 36        |
| 112 | Thermally activated delayed fluorescence material-sensitized helicene enantiomer-based OLEDs: a new strategy for improving the efficiency of circularly polarized electroluminescence. Science China Materials, 2021, 64, 899-908.                                  | 6.3  | 36        |
| 113 | Enhancing the Overall Performances of Blue Light-Emitting Electrochemical Cells by Using an<br>Electron-Injecting/Transporting Ionic Additive. ACS Applied Materials & Interfaces, 2018, 10,<br>11801-11809.                                                        | 8.0  | 35        |
| 114 | Colorâ€Tunable Allâ€Fluorescent White Organic Lightâ€Emitting Diodes with a High External Quantum<br>Efficiency Over 30% and Extended Device Lifetime. Advanced Materials, 2022, 34, e2103102.                                                                      | 21.0 | 35        |
| 115 | Blue-green emitting cationic iridium complexes with 1,3,4-oxadiazole cyclometallating ligands:<br>synthesis, photophysical and electrochemical properties, theoretical investigation and<br>electroluminescent devices. Dalton Transactions, 2015, 44, 15914-15923. | 3.3  | 34        |
| 116 | Charge Transport in Amorphous Organic Semiconductors: Effects of Disorder, Carrier Density, Traps, and Scatters. Israel Journal of Chemistry, 2014, 54, 918-926.                                                                                                    | 2.3  | 33        |
| 117 | Transfer-printed, tandem microscale light-emitting diodes for full-color displays. Proceedings of the<br>National Academy of Sciences of the United States of America, 2021, 118, .                                                                                 | 7.1  | 33        |
| 118 | Lanthanide Cerium(III) Tris(pyrazolyl)borate Complexes: Efficient Blue Emitters for Doublet Organic<br>Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 45686-45695.                                                                            | 8.0  | 33        |
| 119 | Sterically Wrapped Multiple Resonance Fluorophors for Suppression of Concentration Quenching and Spectrum Broadening. Angewandte Chemie, 2022, 134, .                                                                                                               | 2.0  | 32        |
| 120 | A high triplet energy small molecule based thermally cross-linkable hole-transporting material for solution-processed multilayer blue electrophosphorescent devices. Journal of Materials Chemistry C, 2015, 3, 243-246.                                            | 5.5  | 31        |
| 121 | Highâ€Performance Organic Optocouplers Based on a Photosensitive Interfacial C <sub>60</sub> /NPB<br>Heterojunction. Advanced Materials, 2009, 21, 2501-2504.                                                                                                       | 21.0 | 29        |
| 122 | White light emission from an exciplex based on a phosphine oxide type electron transport compound in a bilayer device structure. RSC Advances, 2013, 3, 21453.                                                                                                      | 3.6  | 29        |
| 123 | Cationic Iridium Complexes with 5-Phenyl-1H-1,2,4-triazole Type Cyclometalating Ligands: Toward<br>Blue-Shifted Emission. Inorganic Chemistry, 2019, 58, 12132-12145.                                                                                               | 4.0  | 29        |
| 124 | Simultaneous enhancement of efficiency and stability of OLEDs with thermally activated delayed fluorescence materials by modifying carbazoles with peripheral groups. Science China Chemistry, 2019, 62, 393-402.                                                   | 8.2  | 29        |
| 125 | Trifluoromethylation of Tetraphenylborate Counterions in Cationic Iridium(III) Complexes: Enhanced<br>Electrochemical Stabilities, Chargeâ€Transport Abilities, and Device Performance. Chemistry - A<br>European Journal, 2014, 20, 15903-15912.                   | 3.3  | 28        |
| 126 | Rational Design of Chelated Aluminum Complexes toward Highly Efficient and Thermally Stable<br>Electron-Transporting Materials. Chemistry of Materials, 2014, 26, 3693-3700.                                                                                        | 6.7  | 28        |

| #   | Article                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | π–π stacking: a strategy to improve the electron mobilities of bipolar hosts for TADF and<br>phosphorescent devices with low efficiency roll-off. Journal of Materials Chemistry C, 2017, 5,<br>3372-3381.                                                          | 5.5  | 28        |
| 128 | Understanding the operational lifetime expansion methods of thermally activated delayed<br>fluorescence sensitized OLEDs: a combined study of charge trapping and exciton dynamics. Materials<br>Chemistry Frontiers, 2019, 3, 1181-1191.                           | 5.9  | 28        |
| 129 | Tandem organic light-emitting diodes with KBH_4 doped 9,10-bis(3-(pyridin-3-yl)phenyl) anthracene connected to the charge generation layer. Optics Express, 2012, 20, 14564.                                                                                        | 3.4  | 27        |
| 130 | Polycyclic Aromatic Hydrocarbon Derivatives toward Ideal Electron-Transporting Materials for Organic Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2019, 10, 2528-2537.                                                                             | 4.6  | 27        |
| 131 | Polyethylenimine and sodium cholate-modified ethosomes complex as multidrug carriers for theÂtreatment of melanoma through transdermal delivery. Nanomedicine, 2019, 14, 2395-2408.                                                                                 | 3.3  | 26        |
| 132 | Electric Field inside a Hole-Only Device and Insights into Space-Charge-Limited Current Measurement for Organic Semiconductors. Journal of Physical Chemistry C, 2014, 118, 9990-9995.                                                                              | 3.1  | 25        |
| 133 | Highly efficient green phosphorescent organic light-emitting diodes with low efficiency roll-off<br>based on iridium( <scp>iii</scp> ) complexes bearing oxadiazol-substituted amide ligands. Journal of<br>Materials Chemistry C, 2016, 4, 5469-5475.              | 5.5  | 25        |
| 134 | Orange-red- and white-emitting diodes fabricated by vacuum evaporation deposition of sublimable cationic iridium complexes. Journal of Materials Chemistry C, 2016, 4, 5051-5058.                                                                                   | 5.5  | 25        |
| 135 | Toward fluorine-free blue-emitting cationic iridium complexes: to generate emission from the cyclometalating ligands with enhanced triplet energy. Dalton Transactions, 2016, 45, 5604-5613.                                                                        | 3.3  | 25        |
| 136 | Persistent Luminescence Nanophosphor Involved Near-Infrared Optical Bioimaging for Investigation<br>of Foodborne Probiotics Biodistribution in Vivo: A Proof-of-Concept Study. Journal of Agricultural<br>and Food Chemistry, 2017, 65, 8229-8240.                  | 5.2  | 25        |
| 137 | Positional isomerism effect of spirobifluorene and terpyridine moieties of<br>"(A) <sub>n</sub> –D–(A) <sub>n</sub> ―type electron transport materials for long-lived and highly<br>efficient TADF-PhOLEDs. Journal of Materials Chemistry C, 2018, 6, 10276-10283. | 5.5  | 25        |
| 138 | Nonâ€Doped Skyâ€Blue OLEDs Based on Simple Structured AIE Emitters with High Efficiencies at Low<br>Driven Voltages. Chemistry - an Asian Journal, 2017, 12, 2189-2196.                                                                                             | 3.3  | 24        |
| 139 | Toward Tunable Electroluminescent Devices by Correlating Function and Submolecular Structure in 3D Crystals, 2D-Confined Monolayers, and Dimers. ACS Applied Materials & Interfaces, 2018, 10, 22460-22473.                                                         | 8.0  | 24        |
| 140 | Beyond a Linker: The Role of Photochemistry of Crosslinkers in the Direct Optical Patterning of Colloidal Nanocrystals. Angewandte Chemie - International Edition, 2022, 61, .                                                                                      | 13.8 | 24        |
| 141 | A novel fluorescence sensing method based on quantum dot-graphene and a molecular imprinting technique for the detection of tyramine in rice wine. Analytical Methods, 2018, 10, 3884-3889.                                                                         | 2.7  | 23        |
| 142 | Efficient red phosphorescent OLEDs based on the energy transfer from interface exciplex: the critical role of constituting molecules. Science China Chemistry, 2018, 61, 836-843.                                                                                   | 8.2  | 23        |
| 143 | Hydrogen bond modulation in 1,10-phenanthroline derivatives for versatile electron transport<br>materials with high thermal stability, large electron mobility and excellent n-doping ability. Science<br>Bulletin, 2020, 65, 153-160.                              | 9.0  | 23        |
| 144 | Thermally Decomposable Lithium Nitride as an Electron Injection Material for Highly Efficient and<br>Stable OLEDs. Journal of Physical Chemistry C, 2009, 113, 13386-13390.                                                                                         | 3.1  | 22        |

| #   | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | A flexible blue light sensitive organic photodiode with high properties for the applications in<br>lowâ€voltageâ€control circuit and flexion sensors. Laser and Photonics Reviews, 2014, 8, 316-323.                                                  | 8.7 | 22        |
| 146 | Controlling Ion Distribution for High-Performance Organic Light-Emitting Diodes Based on<br>Sublimable Cationic Iridium(III) Complexes. ACS Applied Materials & Interfaces, 2018, 10, 29814-29823.                                                    | 8.0 | 22        |
| 147 | Indolo[3,2,1â€ <i>jk</i> ]carbazole Embedded Multipleâ€Resonance Fluorophors for Narrowband Deepâ€blue<br>Electroluminescence with EQEâ‰^34.7 % and CIE <sub>y</sub> â‰^0.085. Angewandte Chemie, 2021, 133,<br>12377-12381.                          | 2.0 | 22        |
| 148 | Efficient blue-green and white organic light-emitting diodes withÂaÂsmall-molecule host and cationic<br>iridium complexes asÂdopants. Applied Physics A: Materials Science and Processing, 2010, 100, 1035-1040.                                      | 2.3 | 21        |
| 149 | Multifunctional emitters for efficient simplified non-doped blueish green organic light emitting<br>devices with extremely low efficiency roll-off. Journal of Materials Chemistry C, 2017, 5, 6527-6536.                                             | 5.5 | 21        |
| 150 | Toward Highâ€Performance Vacuumâ€Deposited OLEDs: Sublimable Cationic Iridium(III) Complexes with<br>Yellow and Orange Electroluminescence. Chemistry - A European Journal, 2018, 24, 5574-5583.                                                      | 3.3 | 21        |
| 151 | Fluorine-free, highly efficient, blue-green and sky-blue-emitting cationic iridium complexes and their<br>use for efficient organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 1509-1520.                                      | 5.5 | 21        |
| 152 | Efficient solution-processed phosphor-sensitized single-emitting-layer white organic light-emitting devices: fabrication, characteristics, and transient analysis of energy transfer. Journal of Materials Chemistry, 2011, 21, 5312.                 | 6.7 | 20        |
| 153 | <i>Review Paper</i> : Progress on efficient cathodes for organic lightâ€emitting diodes. Journal of the Society for Information Display, 2011, 19, 453-461.                                                                                           | 2.1 | 20        |
| 154 | Highly efficient inverted polymer solar cells by using solution processed MgO/ZnO composite interfacial layers. Journal of Colloid and Interface Science, 2021, 583, 178-187.                                                                         | 9.4 | 20        |
| 155 | Fusion of Multiâ€Resonance Fragment with Conventional Polycyclic Aromatic Hydrocarbon for Nearly<br>BT.2020 Green Emission. Angewandte Chemie, 2022, 134, .                                                                                           | 2.0 | 19        |
| 156 | Organic cesium salt as an efficient electron injection material for organic light-emitting diodes.<br>Applied Physics Letters, 2008, 93, 183302.                                                                                                      | 3.3 | 18        |
| 157 | Low-Temperature Evaporable Re <sub>2</sub> O <sub>7</sub> : An Efficient p-Dopant for OLEDs. Journal of Physical Chemistry C, 2013, 117, 13763-13769.                                                                                                 | 3.1 | 18        |
| 158 | Characteristics of Plasmids Coharboring 16S rRNA Methylases, CTX-M, and Virulence Factors in<br><i>Escherichia coli</i> and <i>Klebsiella pneumoniae</i> Isolates from Chickens in China. Foodborne<br>Pathogens and Disease, 2015, 12, 873-880.      | 1.8 | 18        |
| 159 | Phosphorescent cationic iridium complexes with phenyl-imidazole type cyclometalating ligands: A combined experimental and theoretical study on photophysical, electrochemical and electroluminescent properties. Dyes and Pigments, 2016, 131, 76-83. | 3.7 | 18        |
| 160 | Using an organic radical precursor as an electron injection material for efficient and stable organic light-emitting diodes. Nanotechnology, 2016, 27, 174001.                                                                                        | 2.6 | 18        |
| 161 | High-Efficiency Organic Light-Emitting Diodes Based on Sublimable Cationic Iridium(III) Complexes with<br>Sterically Hindered Spacers. ACS Photonics, 2018, 5, 3428-3437.                                                                             | 6.6 | 18        |
| 162 | Simultaneously Enhanced Reverse Intersystem Crossing and Radiative Decay in Thermally Activated<br>Delayed Fluorophors with Multiple Throughâ€space Charge Transfers. Angewandte Chemie, 2021, 133,<br>23964-23969.                                   | 2.0 | 18        |

| #   | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Sublimable Cationic Iridium(III) Complexes with 1,10â€Phenanthroline Derivatives as Ancillary Ligands for<br>Highly Efficient and Polychromic Electroluminescence. Chemistry - A European Journal, 2016, 22,<br>15888-15895.                        | 3.3  | 17        |
| 164 | Ambipolar Transporting 1,2â€Benzanthracene Derivative with Efficient Green Excimer Emission for<br>Single‣ayer Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2013, 1, 167-172.                                                        | 7.3  | 16        |
| 165 | Multifunctional Materials for High-Performance Double-Layer Organic Light-Emitting Diodes:<br>Comparison of Isomers with and without Thermally Activated Delayed Fluorescence. ACS Applied<br>Materials & Interfaces, 2017, 9, 17279-17289.         | 8.0  | 16        |
| 166 | Stabilization of Blue Emitters with Thermally Activated Delayed Fluorescence by the Steric Effect: A<br>Case Study by means of Magnetic Field Effects. Physical Review Applied, 2020, 14, .                                                         | 3.8  | 16        |
| 167 | Systematically tuning the ΔE <sub>ST</sub> and charge balance property of bipolar hosts for low operating voltage and high power efficiency solution-processed electrophosphorescent devices. Journal of Materials Chemistry C, 2015, 3, 5004-5016. | 5.5  | 15        |
| 168 | Organic Radicals Outperform LiF as Efficient Electron-Injection Materials for Organic Light-Emitting<br>Diodes. Journal of Physical Chemistry Letters, 2017, 8, 4769-4773.                                                                          | 4.6  | 15        |
| 169 | Synergistic optimization of interfacial energy-level alignment and defect passivation toward efficient annealing-free inverted polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 18792-18801.                                         | 10.3 | 15        |
| 170 | Adjusting the photophysical properties of AIE-active TADF emitters from through-bond to<br>through-space charge transfer for high-performance solution-processed OLEDs. Dyes and Pigments,<br>2021, 188, 109208.                                    | 3.7  | 15        |
| 171 | Improving the performance of OLEDs by using a low-temperature-evaporable n-dopant and a high-mobility electron transport host. Optics Express, 2011, 19, A1265.                                                                                     | 3.4  | 14        |
| 172 | Stable Organic Radicals as Hole Injection Dopants for Efficient Optoelectronics. ACS Applied<br>Materials & Interfaces, 2018, 10, 4882-4886.                                                                                                        | 8.0  | 14        |
| 173 | Recent Progress in Sublimable Cationic Iridium(III) Complexes for Organic Lightâ€Emitting Diodes.<br>Chemical Record, 2019, 19, 1483-1498.                                                                                                          | 5.8  | 14        |
| 174 | Sublimable cationic iridium( <scp>iii</scp> ) complexes for red-emitting diodes with high colour purity.<br>Journal of Materials Chemistry C, 2020, 8, 14766-14772.                                                                                 | 5.5  | 14        |
| 175 | Decoration Strategy in Para Boron Position: An Effective Way to Achieve Ideal Multiâ€Resonance<br>Emitters. Chemistry - A European Journal, 2022, 28, .                                                                                             | 3.3  | 14        |
| 176 | A cationic iridium complex meets an electron-transporting counter-anion: enhanced performances of solution-processed phosphorescent light-emitting diodes. Chemical Communications, 2016, 52, 14466-14469.                                          | 4.1  | 13        |
| 177 | Bee-shaped host with ideal polarity and energy levels for high-efficiency blue and white fluorescent organic light-emitting diodes. Chemical Engineering Journal, 2021, 411, 128457.                                                                | 12.7 | 13        |
| 178 | Experimental and theoretical study of the charge transport property of 4,4′-N,N′-dicarbazole-biphenyl.<br>Science China Chemistry, 2012, 55, 2428-2432.                                                                                             | 8.2  | 12        |
| 179 | Cationic iridium(III) complexes with different-sized negative counter-ions for solution-processed deep-blue-emitting diodes. Organic Electronics, 2016, 39, 16-24.                                                                                  | 2.6  | 12        |
| 180 | Self-assembly monomolecular engineering towards efficient and stable inverted perovskite solar cells. Chemical Engineering Journal, 2022, 430, 132986.                                                                                              | 12.7 | 12        |

| #   | Article                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Lithium cobalt oxide as electron injection material for high performance organic light-emitting diodes. Applied Physics Letters, 2008, 92, 073301.                                                                                                                               | 3.3  | 11        |
| 182 | Study on the Electron Injection Mechanism of Thermally Decomposable<br>Cs <sub>2</sub> CO <sub>3</sub> . Japanese Journal of Applied Physics, 2009, 48, 102302.                                                                                                                  | 1.5  | 11        |
| 183 | Highly Efficient Hybrid White Tandem Organic Lightâ€Emitting Diodes with MoO <sub>3</sub> Layer.<br>Chinese Journal of Chemistry, 2015, 33, 859-864.                                                                                                                             | 4.9  | 11        |
| 184 | Accelerating Radiative Decay in Blue Throughâ€Space Charge Transfer Emitters by Minimizing the<br>Faceâ€ŧoâ€Face Donor–Acceptor Distances. Angewandte Chemie, 0, , .                                                                                                             | 2.0  | 11        |
| 185 | Nanocomposite Thin Film Based on Ytterbium Fluoride and<br><i>N,N′</i> -Bis(1-naphthyl)- <i>N,N′</i> -diphenyl-1,1′-biphenyl-4,4′-diamine and Its Application in Orga<br>Light Emitting Diodes as Hole Transport Layer. Journal of Physical Chemistry C, 2008, 112, 11985-11990. | n8c1 | 10        |
| 186 | Preparation and spectral characteristics of anthracene/tetracene mixed crystals. Science in China Series B: Chemistry, 2009, 52, 181-187.                                                                                                                                        | 0.8  | 10        |
| 187 | High-Performance Organic Optocouplers Based on an Organic Photodiode With High Blue Light<br>Sensitivity. IEEE Electron Device Letters, 2013, 34, 1295-1297.                                                                                                                     | 3.9  | 9         |
| 188 | Full-solution-processed high mobility zinc-tin-oxide thin-film-transistors. Science China<br>Technological Sciences, 2016, 59, 1407-1412.                                                                                                                                        | 4.0  | 9         |
| 189 | Deep insights into the viscosity of small molecular solutions for organic light-emitting diodes. RSC<br>Advances, 2018, 8, 4153-4161.                                                                                                                                            | 3.6  | 9         |
| 190 | Vacuumâ€Deposited versus Spinâ€Coated Emissive Layers for Fabricating Highâ€Performance<br>Blue–Greenâ€Emitting Diodes. ChemPlusChem, 2018, 83, 211-216.                                                                                                                         | 2.8  | 9         |
| 191 | High-performance yellow- and orange-emitting diodes based on novel sublimable cationic<br>iridium( <scp>iii</scp> ) complexes by ligand control. Journal of Materials Chemistry C, 2018, 6,<br>5630-5638.                                                                        | 5.5  | 9         |
| 192 | High-efficiency blue–green electroluminescence from sublimable cationic iridium(iii) complexes with<br>a pyrazole-type ligand. Journal of Materials Chemistry C, 2019, 7, 3503-3511.                                                                                             | 5.5  | 9         |
| 193 | Modulation of ligand conjugation for efficient FAPbBr <sub>3</sub> based green light-emitting diodes. Materials Chemistry Frontiers, 2020, 4, 1383-1389.                                                                                                                         | 5.9  | 9         |
| 194 | Nitrogenâ€Embedded Multiâ€Resonance Heteroaromatics with Prolonged Homogeneous Hexatomic Rings.<br>Angewandte Chemie, 0, , .                                                                                                                                                     | 2.0  | 9         |
| 195 | Research on the adhesive ability between ITO anode and PET substrate improved by polyimide buffer<br>layer. Science Bulletin, 2005, 50, 505-508.                                                                                                                                 | 1.7  | 7         |
| 196 | Synthesis and characterization of nano/micro-structured crystalline germanium dioxide with novel morphology. Science Bulletin, 2009, 54, 2810-2813.                                                                                                                              | 9.0  | 7         |
| 197 | A case-based reasoning approach for task-driven spatial–temporally aware geospatial data discovery through geoportals. International Journal of Digital Earth, 2017, 10, 1146-1165.                                                                                              | 3.9  | 7         |
| 198 | Green Electrospun Silk Fibroin Nanofibers Loaded with Cationic Ethosomes for Transdermal Drug<br>Delivery. Chemical Research in Chinese Universities, 2021, 37, 488-495.                                                                                                         | 2.6  | 7         |

| #   | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Synthesis and electroluminescence properties of a novel poly(paraphenylene vinylene)-based copolymer with tri(ethylene oxide) segments on the backbone. Journal of Applied Polymer Science, 2002, 83, 2195-2200. | 2.6  | 6         |
| 200 | Synthesis and electroluminescent properties of a novel copolymer with short alternating conjugated and non-conjugated blocks. Polymer International, 2003, 52, 343-346.                                          | 3.1  | 6         |
| 201 | Highly Integrable Organic Optocouplers on a Patterned Double-Side Indium Tin Oxide Substrate With<br>High Isolation Voltage. IEEE Electron Device Letters, 2015, 36, 171-173.                                    | 3.9  | 6         |
| 202 | Approaching Ohmic hole contact via a synergetic effect of a thin insulating layer and strong electron acceptors. Science China Materials, 2021, 64, 3124-3130.                                                   | 6.3  | 6         |
| 203 | Modification of Indium Tin Oxide Surface with HCl for Source/Drain Electrodes in Organic Thin Film<br>Transistors. Advanced Materials Technologies, 2022, 7, .                                                   | 5.8  | 6         |
| 204 | Cirsium Japonicum DC ingredients-loaded silk fibroin nanofibrous matrices with excellent hemostatic activity. Biomedical Physics and Engineering Express, 2018, 4, 025035.                                       | 1.2  | 5         |
| 205 | Investigation on two triphenylene based electron transport materials. Science China Chemistry, 2019, 62, 775-783.                                                                                                | 8.2  | 5         |
| 206 | Pâ€1: Development of Highâ€yield Laser Liftâ€off Process for Micro LED Display. Digest of Technical Papers<br>SID International Symposium, 2020, 51, 1312-1314.                                                  | 0.3  | 5         |
| 207 | A novel anthracene derivative with an asymmetric structure as an electron transport material for stable Rec. 2020 blue organic light-emitting diodes. Journal of Information Display, 2020, 21, 197-201.         | 4.0  | 5         |
| 208 | In situ-formed tetrahedrally coordinated double-helical metal complexes for improved coordination-activated n-doping. Nature Communications, 2022, 13, 1215.                                                     | 12.8 | 5         |
| 209 | A multifunctional ionic iridium complex for field-effect and light-emitting devices. RSC Advances, 2014, 4, 51294-51297.                                                                                         | 3.6  | 4         |
| 210 | Paddy rice field mapping using GF-1 images with SVM method. , 2017, , .                                                                                                                                          |      | 4         |
| 211 | Sublimable cationic iridium( <scp>iii</scp> ) complexes with large steric hindrance for high-performance organic light-emitting diodes. Dalton Transactions, 2019, 48, 9669-9675.                                | 3.3  | 4         |
| 212 | Pâ€170: Decomposable Alkali Compounds as Alkali Metal Precursors for Organic Lightâ€Emitting Diodes.<br>Digest of Technical Papers SID International Symposium, 2007, 38, 834-836.                               | 0.3  | 3         |
| 213 | Transparent organic light-emitting diodes based on Cs2CO3:Ag/Ag composite cathode. Science Bulletin, 2010, 55, 1479-1482.                                                                                        | 1.7  | 3         |
| 214 | Preparation and properties of solution-processed zinc tin oxide films from a new organic precursor.<br>Science China Chemistry, 2011, 54, 651-655.                                                               | 8.2  | 3         |
| 215 | Bipolar charge transport property of N,N′-dicarbazolyl-1,4-dimethene-benzene: A study of the short<br>range order model. Science Bulletin, 2013, 58, 79-83.                                                      | 1.7  | 3         |
| 216 | Programmable and Erasable Pentacene/Ta <sub>2</sub> O <sub>5</sub><br>Phototransistor Memory With Improved Retention Time. IEEE Electron Device Letters, 2014, 35, 741-743.                                      | 3.9  | 3         |

| #   | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Indeno-anthraquinone hosts with thermally activated delayed fluorescence for deep-red OLEDs.<br>Journal of Materials Chemistry C, 2022, 10, 4668-4673.                                                             | 5.5  | 3         |
| 218 | New hybrid encapsulation for flexible organic light-emitting devices on plastic substrates. Science Bulletin, 2008, 53, 958-960.                                                                                   | 9.0  | 2         |
| 219 | P-213: Decomposable Precursors as Electron Injection Materials for High Performance Organic<br>Light-Emitting Devices. Digest of Technical Papers SID International Symposium, 2008, 39, 2008.                     | 0.3  | 2         |
| 220 | Pâ€159: Decomposable Alkali Compounds for Transparent Cathodes in OLEDs. Digest of Technical Papers<br>SID International Symposium, 2009, 40, 1714-1715.                                                           | 0.3  | 2         |
| 221 | Estimating leaf area index of winter oilseed rape using high spatial resolution satellite data. , 2016, , .                                                                                                        |      | 2         |
| 222 | Pâ€95: A Facile Multiâ€Transfer Method by Flexible Tape for Micro‣ED Display Applications. Digest of<br>Technical Papers SID International Symposium, 2020, 51, 1723-1726.                                         | 0.3  | 2         |
| 223 | AMBIPOLAR CHARGE TRANSPORT: Strategies to Design Bipolar Small Molecules for OLEDs:<br>Donor-Acceptor Structure and Non-Donor-Acceptor Structure (Adv. Mater. 9/2011). Advanced<br>Materials, 2011, 23, 1136-1136. | 21.0 | 1         |
| 224 | Monitoring the impacts of waterlogging on winter wheat using high spatial resolution satellite data. , 2016, , .                                                                                                   |      | 1         |
| 225 | LEDs Based on Small Molecules. , 2019, , 215-304.                                                                                                                                                                  |      | 1         |
| 226 | A Facile Multiâ€transfer Method by Flexible Tape for Microâ€LED Display Applications. Digest of Technical<br>Papers SID International Symposium, 2020, 51, 113-116.                                                | 0.3  | 1         |
| 227 | Beyond a Linker: The Role of Photochemistry of Crosslinkers in the Direct Optical Patterning of<br>Colloidal Nanocrystals. Angewandte Chemie, 2022, 134, .                                                         | 2.0  | 1         |
| 228 | 45.4: Dimers of Organic Metal Complexes Based on Tridentate Schiff-Base Ligand for Organic<br>Electroluminescence. Digest of Technical Papers SID International Symposium, 2003, 34, 1298.                         | 0.3  | 0         |
| 229 | Fabrication and spectra characteristics of high efficiency white organic light-emitting diodes with single emitting layer. Science Bulletin, 2004, 49, 2133-2136.                                                  | 1.7  | 0         |
| 230 | Tandem white OLED with low driving voltages using a novel electron transporting material. , 2013, , .                                                                                                              |      | 0         |
| 231 | [Ir(ppy)2pyim]PF6dielectric mixed with PMMA for area emission transistors. RSC Advances, 2016, 6, 94010-94013.                                                                                                     | 3.6  | 0         |
| 232 | Pâ€85: Development of Highâ€yield Laser Liftâ€off Process for Micro LED Display. Digest of Technical Papers<br>SID International Symposium, 2020, 51, 1688-1690.                                                   | 0.3  | 0         |
| 233 | Development of Highâ€yield Laser Liftâ€off Process for Micro LED Display. Digest of Technical Papers SID<br>International Symposium, 2020, 51, 55-57.                                                              | 0.3  | 0         |
| 234 | 45.1: Highâ€Performance Deep Blue OLEDs with EQE up to 31%. Digest of Technical Papers SID<br>International Symposium, 2021, 52, 296-297.                                                                          | 0.3  | 0         |

| #   | Article                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | 26â€2: Invited Paper: Efficient and Stable Deepâ€Blue OLEDs Based on TADF Sensitized Fluorescence (TSF).<br>Digest of Technical Papers SID International Symposium, 2021, 52, 324-327. | 0.3 | Ο         |
| 236 | 38.2: Invited Paper: A sensitized way towards stable blue OLEDs. Digest of Technical Papers SID<br>International Symposium, 2021, 52, 484-485.                                         | 0.3 | 0         |
| 237 | 12.1: Invited Paper: Efficiency enhancement in dual emission OLEDs. Digest of Technical Papers SID<br>International Symposium, 2021, 52, 176-178.                                      | 0.3 | Ο         |
| 238 | White Organic Light-Emitting Diodes. , 2022, , 277-357.                                                                                                                                |     | 0         |