Jennifer A Rudgers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1002469/publications.pdf

Version: 2024-02-01

133 papers 6,410 citations

43 h-index 76900 74 g-index

135 all docs

135 docs citations

times ranked

135

6445 citing authors

#	Article	IF	CITATIONS
1	Biogeography of rootâ€associated fungi in foundation grasses of North American plains. Journal of Biogeography, 2022, 49, 22-37.	3.0	17
2	Climate mediates longâ€ŧerm impacts of rodent exclusion on desert plant communities. Ecological Monographs, 2022, 92, .	5.4	3
3	Disturbance to biocrusts decreased cyanobacteria, <scp>N</scp> â€fixer abundance, and grass leaf <scp>N</scp> but increased fungal abundance. Ecology, 2022, 103, e3656.	3.2	4
4	Grass species identity shapes communities of root and leaf fungi more than elevation. ISME Communications, 2022, 2, .	4.2	11
5	<i>Darksidea phi</i> , sp. nov., a dark septate root-associated fungus in foundation grasses in North American Great Plains. Mycologia, 2022, 114, 254-269.	1.9	6
6	Rainfall pulse regime drives biomass and community composition in biological soil crusts. Ecology, 2022, 103, e3744.	3.2	10
7	Sensitivity of soil organic matter to climate and fire in a desert grassland. Biogeochemistry, 2021, 156, 59-74.	3.5	7
8	Contextâ€dependent variability in the population prevalence and individual fitness effects of plant–fungal symbiosis. Journal of Ecology, 2021, 109, 847-859.	4.0	6
9	Experimental drought reâ€ordered assemblages of rootâ€associated fungi across North American grasslands. Journal of Ecology, 2021, 109, 776-792.	4.0	17
10	Culturable root endophyte communities are shaped by both warming and plant host identity in the Rocky Mountains, USA. Fungal Ecology, 2021, 49, 101002.	1.6	5
11	Flood regime alters the abiotic correlates of riparian vegetation. Applied Vegetation Science, 2021, 24, e12572.	1.9	0
12	State changes: insights from the U.S. Long Term Ecological Research Network. Ecosphere, 2021, 12, e03433.	2,2	6
13	Arsenic Accumulation in Hydroponically Grown <i>Schizachyrium scoparium</i> (Little Bluestem) Amended with Root-Colonizing Endophytes. ACS Earth and Space Chemistry, 2021, 5, 1278-1287.	2.7	3
14	Mammalian herbivores restrict the altitudinal range limits of alpine plants. Ecology Letters, 2021, 24, 1930-1942.	6.4	9
15	Declines in rodent abundance and diversity track regional climate variability in North American drylands. Global Change Biology, 2021, 27, 4005-4023.	9.5	7
16	Divergent responses of primary production to increasing precipitation variability in global drylands. Global Change Biology, 2021, 27, 5225-5237.	9.5	31
17	Patterns and trends of organic matter processing and transport: Insights from the US long-term ecological research network. Climate Change Ecology, 2021, 2, 100025.	1.9	3
18	Fungal connections between plants and biocrusts facilitate plants but have little effect on biocrusts. Journal of Ecology, 2020, 108, 894-907.	4.0	5

#	Article	IF	Citations
19	Weak latitudinal gradients in insect herbivory for dominant rangeland grasses of North America. Ecology and Evolution, 2020, 10, 6385-6394.	1.9	7
20	Riparian plant species differ in sensitivity to both the mean and variance in groundwater stores. Journal of Plant Ecology, 2020, 13, 621-632.	2.3	4
21	Climate Disruption of Plant-Microbe Interactions. Annual Review of Ecology, Evolution, and Systematics, 2020, 51, 561-586.	8.3	72
22	Improving Instructional Fitness Requires Change. BioScience, 2020, 70, 1027-1035.	4.9	1
23	Predicting changes in bee assemblages following state transitions at North American dryland ecotones. Scientific Reports, 2020, 10, 708.	3.3	7
24	Simulated folivory increases vertical transmission of fungal endophytes that deter herbivores and alter tolerance to herbivory in <i>Poa autumnalis </i> . Annals of Botany, 2020, 125, 981-991.	2.9	10
25	Press–pulse interactions and longâ€ŧerm community dynamics in a Chihuahuan Desert grassland. Journal of Vegetation Science, 2020, 31, 722-732.	2.2	21
26	Testing for loss of Epichloë and nonâ€epichloid symbionts under altered rainfall regimes. American Journal of Botany, 2019, 106, 1081-1089.	1.7	3
27	Sensitivity of dryland plant allometry to climate. Functional Ecology, 2019, 33, 2290-2303.	3.6	24
28	Soil microbes that may accompany climate warming increase alpine plant production. Oecologia, 2019, 191, 493-504.	2.0	6
29	Plant Identity Influences Foliar Fungal Symbionts More Than Elevation in the Colorado Rocky Mountains. Microbial Ecology, 2019, 78, 688-698.	2.8	20
30	Soil surface disturbance alters cyanobacterial biocrusts and soil properties in dry grassland and shrubland ecosystems. Plant and Soil, 2019, 441, 147-159.	3.7	11
31	Contextâ€dependent biotic interactions control plant abundance across altitudinal environmental gradients. Ecography, 2019, 42, 1600-1612.	4.5	21
32	Connecting plant–soil feedbacks to longâ€ŧerm stability in a desert grassland. Ecology, 2019, 100, e02756.	3.2	31
33	Direct and indirect influences of warming on leaf endophytic fungi: A physiological and compositional approach., 2019,, 125-140.		2
34	Altitudinal gradients fail to predict fungal symbiont responses to warming. Ecology, 2019, 100, e02740.	3.2	25
35	Experimental drought reduces genetic diversity in the grassland foundation species Bouteloua eriopoda. Oecologia, 2019, 189, 1107-1120.	2.0	15
36	Does host outcrossing disrupt compatibility with heritable symbionts?. Oikos, 2019, 128, 892-903.	2.7	7

#	Article	IF	CITATIONS
37	Divergence in Diversity and Composition of Root-Associated Fungi Between Greenhouse and Field Studies in a Semiarid Grassland. Microbial Ecology, 2019, 78, 122-135.	2.8	13
38	Leaf endophytes mediate fertilizer effects on plant yield and traits in northern oat grass (Trisetum) Tj ETQq0 0 (O rgBT ₇ /Ov	erlock 10 Tf 50
39	Plant-microbe interactions as a cause of ring formation in Bouteloua gracilis. Journal of Arid Environments, 2018, 152, 1-5.	2.4	6
40	Climate sensitivity functions and net primary production: A framework for incorporating climate mean and variability. Ecology, 2018, 99, 576-582.	3.2	73
41	Asexual Epichloë Endophytes Do Not Consistently Alter Arbuscular Mycorrhizal Fungi Colonization in Three Grasses. American Midland Naturalist, 2018, 179, 157-165.	0.4	13
42	Exposure to predicted precipitation patterns decreases population size and alters community structure of cyanobacteria in biological soil crusts from the Chihuahuan Desert. Environmental Microbiology, 2018, 20, 259-269.	3.8	83
43	Testing the roles of vertical transmission and drought stress in the prevalence of heritable fungal endophytes in annual grass populations. New Phytologist, 2018, 219, 1075-1084.	7.3	10
44	Are fungal networks key to dryland primary production?. American Journal of Botany, 2018, 105, 1783-1787.	1.7	19
45	Pocket gopher (<i>Thomomys talpoides</i>) soil disturbance peaks at mid-elevation and is associated with air temperature, forb cover, and plant diversity. Arctic, Antarctic, and Alpine Research, 2018, 50, .	1.1	10
46	Biocrusts benefit from plant removal. American Journal of Botany, 2018, 105, 1133-1141.	1.7	9
47	Does a foliar endophyte improve plant fitness under flooding?. Plant Ecology, 2017, 218, 711-723.	1.6	17
48	Vertically transmitted symbionts as mechanisms of transgenerational effects. American Journal of Botany, 2017, 104, 787-792.	1.7	44
49	Spatial variation in edaphic characteristics is a stronger control than nitrogen inputs in regulating soil microbial effects on a desert grass. Journal of Arid Environments, 2017, 142, 59-65.	2.4	6
50	Leaf endophytic fungus interacts with precipitation to alter belowground microbial communities in primary successional dunes. FEMS Microbiology Ecology, 2017, 93, .	2.7	35
51	Biogeography of plantâ€associated fungal symbionts in mountain ecosystems: A metaâ€analysis. Diversity and Distributions, 2017, 23, 1067-1077.	4.1	39
52	Variation in the Prevalence and Transmission of Heritable Symbionts Across Host Populations in Heterogeneous Environments. Microbial Ecology, 2017, 74, 640-653.	2.8	9
53	Plant–fungal symbiosis affects litter decomposition during primary succession. Oikos, 2017, 126, 801-811.	2.7	9
54	Biogeography of Root-Associated Fungal Endophytes. Ecological Studies, 2017, , 195-222.	1.2	30

#	Article	IF	Citations
55	Long-term ungulate exclusion reduces fungal symbiont prevalence in native grasslands. Oecologia, 2016, 181, 1151-1161.	2.0	7
56	The Role of Host Demographic Storage in the Ecological Dynamics of Heritable Symbionts. American Naturalist, 2016, 188, 446-459.	2.1	11
57	Plant–soil feedbacks promote negative frequency dependence in the coexistence of two aridland grasses. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160608.	2.6	67
58	Fungal symbiont effects on dune plant diversity depend on precipitation. Journal of Ecology, 2015, 103, 219-230.	4.0	13
59	Soil microbial responses to nitrogen addition in arid ecosystems. Frontiers in Microbiology, 2015, 6, 819.	3.5	55
60	A mutualistic endophyte alters the niche dimensions of its host plant. AoB PLANTS, 2015, 7, plv005-plv005.	2.3	24
61	Biotic and abiotic predictors of fungal colonization in grasses of the Colorado Rockies. Diversity and Distributions, 2015, 21, 962-976.	4.1	48
62	Fungal symbionts maintain a rare plant population but demographic advantage drives the dominance of a common host. Journal of Ecology, 2015, 103, 967-977.	4.0	21
63	Fungal symbiosis and precipitation alter traits and dune building by the ecosystem engineer, Ammophila breviligulata. Ecology, 2015, 96, 927-935.	3.2	18
64	Niche Differentiation in the Dynamics of Host-Symbiont Interactions: Symbiont Prevalence as a Coexistence Problem. American Naturalist, 2014, 183, 506-518.	2.1	14
65	Genetic variation within a dominant shrub structures green and brown community assemblages. Ecology, 2014, 95, 387-398.	3.2	28
66	Nature's microbiome: introduction. Molecular Ecology, 2014, 23, 1225-1237.	3.9	36
67	How context dependent are species interactions?. Ecology Letters, 2014, 17, 881-890.	6.4	480
68	Responses of highâ€altitude graminoids and soil fungi to 20 years of experimental warming. Ecology, 2014, 95, 1918-1928.	3.2	75
69	Multiple mutualist effects: conflict and synergy in multispecies mutualisms. Ecology, 2014, 95, 833-844.	3.2	91
70	Biotic and abiotic predictors of ecosystem engineering traits of the dune building grass, <i>Ammophila breviligulata </i> . Ecosphere, 2014, 5, 1-18.	2.2	22
71	Fungal symbionts alter plant responses to global change. American Journal of Botany, 2013, 100, 1445-1457.	1.7	238
72	Soil nutrients trump intraspecific effects on understory plant communities. Oecologia, 2013, 173, 1531-1538.	2.0	13

#	Article	IF	Citations
73	Impacts of simulated climate change and fungal symbionts on survival and growth of a foundation species in sand dunes. Oecologia, 2013, 173, 1601-1612.	2.0	11
74	Biochar and Microbial Signaling: Production Conditions Determine Effects on Microbial Communication. Environmental Science & Eamp; Technology, 2013, 47, 11496-11503.	10.0	174
75	Non-additive benefit or cost? Disentangling the indirect effects that occur when plants bearing extrafloral nectaries and honeydew-producing insects share exotic ant mutualists. Annals of Botany, 2013, 111, 1295-1307.	2.9	19
76	Costs, benefits, and loss of vertically transmitted symbionts affect host population dynamics. Oikos, 2013, 122, 1512-1520.	2.7	23
77	Fungal Symbionts as Manipulators of Plant Reproductive Biology. American Naturalist, 2013, 181, 562-570.	2.1	17
78	Nitrogen, biochar, and mycorrhizae: Alteration of the symbiosis and oxidation of the char surface. Soil Biology and Biochemistry, 2013, 58, 248-254.	8.8	90
79	Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community. Ecology, 2013, 94, 1025-1035.	3.2	72
80	Proximity to agriculture alters abundance and community composition of wild sunflower mutualists and antagonists. Ecosphere, 2013, 4, 1-16.	2.2	7
81	Impact of Competition and Mycorrhizal Fungi on Growth of Centaurea stoebe, an Invasive Plant of Sand Dunes. American Midland Naturalist, 2012, 167, 213-222.	0.4	16
82	Microbial mutualists and biodiversity in ecosystems. , 2012, , 391-413.		2
83	Plant species diversity and genetic diversity within a dominant species interactively affect plant community biomass. Journal of Ecology, 2012, 100, 1512-1521.	4.0	62
84	There are many ways to be a mutualist: Endophytic fungus reduces plant survival but increases population growth. Ecology, 2012, 93, 565-574.	3.2	60
85	Patterns of bird invasion are consistent with environmental filtering. Ecography, 2012, 35, 614-623.	4.5	34
86	How do plants balance multiple mutualists? Correlations among traits for attracting protective bodyguards and pollinators in cotton (Gossypium). Evolutionary Ecology, 2012, 26, 65-77.	1.2	18
87	Understanding context-dependency in plant–microbe symbiosis: The influence of abiotic and biotic contexts on host fitness and the rate of symbiont transmission. Environmental and Experimental Botany, 2011, 71, 137-145.	4.2	68
88	Potential for endophyte symbiosis to increase resistance of the native grass Poa alsodes to invasion by the non-native grass Microstegium vimineum. Symbiosis, 2011, 53, 17-28.	2.3	15
89	Water availability alters the tri-trophic consequences of a plant-fungal symbiosis. Arthropod-Plant Interactions, 2011, 5, 19-27.	1.1	12
90	Beach Restoration Efforts Influenced by Plant Variety, Soil Inoculum, and Site Effects. Journal of Coastal Research, 2011, 27, 636.	0.3	11

#	Article	IF	CITATIONS
91	Prevalence of an intraspecificNeotyphodiumhybrid in natural populations of stout wood reed (Cinna) Tj ETQq1 1	0.784314	rgBT /Overlo
92	Pollinator Visits to Threatened Species Are Restored Following Invasive Plant Removal. International Journal of Plant Sciences, 2011, 172, 411-422.	1.3	32
93	Chapter Seven. Red Queen Communities. , 2010, , 145-178.		0
94	Geographic variation in a facultative mutualism: consequences for local arthropod composition and diversity. Oecologia, 2010, 163, 985-996.	2.0	14
95	Fungal endophytes of native grasses decrease insect herbivore preference and performance. Oecologia, 2010, 164, 431-444.	2.0	78
96	Ecological Assessment of Dune Restorations in the Great Lakes Region. Restoration Ecology, 2010, 18, 184-194.	2.9	23
97	Do the costs and benefits of fungal endophyte symbiosis vary with light availability?. New Phytologist, 2010, 188, 824-834.	7.3	34
98	Experimental plant invasion reduces arthropod abundance and richness across multiple trophic levels. Oikos, 2010, 119, 1553-1562.	2.7	88
99	Managing plant symbiosis: fungal endophyte genotype alters plant community composition. Journal of Applied Ecology, 2010, 47, 468-477.	4.0	67
100	Covariation of Soil Bacterial Composition with Plant Rarity. Applied and Environmental Microbiology, 2010, 76, 7665-7667.	3.1	7
101	Searching for Evidence against the Mutualistic Nature of Hereditary Symbioses: A Comment on Faeth. American Naturalist, 2010, 176, 99-103.	2.1	18
102	Genetic variation within a dominant shrub species determines plant species colonization in a coastal dune ecosystem. Ecology, 2010, 91, 1237-1243.	3.2	49
103	Variation in Endophyte Symbiosis, Herbivory and Drought Tolerance of Ammophila breviligulata Populations in the Great Lakes Region. American Midland Naturalist, 2010, 163, 186-196.	0.4	18
104	Constraints on plant signals and rewards to multiple mutualists?. Plant Signaling and Behavior, 2009, 4, 801-804.	2.4	2
105	Endophyte-Mediated Resistance to Herbivores Depends on Herbivore Identity in the Wild GrassFestuca subverticillata. Environmental Entomology, 2009, 38, 1086-1095.	1.4	31
106	Benefits of a fungal endophyte in Elymus virginicus decline under drought stress. Basic and Applied Ecology, 2009, 10, 43-51.	2.7	63
107	Nonâ€native grass alters growth of native tree species via leaf and soil microbes. Journal of Ecology, 2009, 97, 247-255.	4.0	79
108	Elevated dominance of extrafloral nectaryâ€bearing plants is associated with increased abundances of an invasive ant and reduced native ant richness. Diversity and Distributions, 2009, 15, 751-761.	4.1	35

#	Article	lF	CITATIONS
109	A fungus among us: broad patterns of endophyte distribution in the grasses. Ecology, 2009, 90, 1531-1539.	3.2	113
110	An invasive plant–fungal mutualism reduces arthropod diversity. Ecology Letters, 2008, 11, 831-840.	6.4	99
111	Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Oikos, 2008, 117, 310-320.	2.7	178
112	Timing of Prescribed Burns Affects Abundance and Composition of Arthropods in the Texas Hill Country. Southwestern Naturalist, 2008, 53, 137-145.	0.1	20
113	Symbiosis Lost: Imperfect Vertical Transmission of Fungal Endophytes in Grasses. American Naturalist, 2008, 172, 405-416.	2.1	125
114	Experimental Light Treatments Affect Invasion Success and the Impact of Microstegium vimineum on the Resident Community. Natural Areas Journal, 2007, 27, 124-132.	0.5	41
115	FOREST SUCCESSION SUPPRESSED BY AN INTRODUCED PLANT–FUNGAL SYMBIOSIS. Ecology, 2007, 88, 18-25	.3.2	111
116	Endophyte symbiosis with tall fescue: how strong are the impacts on communities and ecosystems?. Fungal Biology Reviews, 2007, 21, 107-124.	4.7	107
117	Plant-fungus mutualism affects spider composition in successional fields. Ecology Letters, 2006, 9, 347-356.	6.4	44
118	Grass–herbivore interactions altered by strains of a native endophyte. New Phytologist, 2006, 170, 513-521.	7.3	53
119	Interactions between insect herbivores and a plant architectural dimorphism. Journal of Ecology, 2006, 94, 1249-1260.	4.0	51
120	Mutualistic fungus promotes plant invasion into diverse communities. Oecologia, 2005, 144, 463-471.	2.0	88
121	Connecting plant–microbial interactions above and belowground: a fungal endophyte affects decomposition. Oecologia, 2005, 145, 595-604.	2.0	116
122	Invasive Plants can Inhibit Native Tree Seedlings: Testing Potential Allelopathic Mechanisms. Plant Ecology, 2005, 181, 153-165.	1.6	132
123	Herbivores cause a rapid increase in hereditary symbiosis and alter plant community composition. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12465-12470.	7.1	176
124	Tradeâ€offs among antiâ€herbivore resistance traits: insights from Gossypieae (Malvaceae). American Journal of Botany, 2004, 91, 871-880.	1.7	87
125	Endophytic fungi alter relationships between diversity and ecosystem properties. Ecology Letters, 2004, 7, 42-51.	6.4	118
126	A selection mosaic in the facultative mutualism between ants and wild cotton. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 2481-2488.	2.6	122

#	Article	IF	CITATIONS
127	ENEMIES OF HERBIVORES CAN SHAPE PLANT TRAITS: SELECTION IN A FACULTATIVE ANT–PLANT MUTUALISM. Ecology, 2004, 85, 192-205.	3.2	130
128	EXTRAFLORAL NECTAR AS A RESOURCE MEDIATING MULTISPECIES INTERACTIONS. Ecology, 2004, 85, 1495-1502.	3.2	91
129	Inter-annual variation in above- and belowground herbivory on a native, annual legume. Plant Ecology, 2003, 169, 105-120.	1.6	14
130	Behavioral mechanisms underlie an ant-plant mutualism. Oecologia, 2003, 135, 51-59.	2.0	52
131	Facilitation between coastal dune shrubs: a non-nitrogen fixing shrub facilitates establishment of a nitrogen-fixer. Oikos, 2003, 102, 75-84.	2.7	48
132	Direct and ecological costs of resistance to herbivory. Trends in Ecology and Evolution, 2002, 17, 278-285.	8.7	765
133	Benefits and Constraints on Plant Defense against Herbivores: Spines Influence the Legitimate and Illegitimate Flower Visitors of Yellow Star Thistle, Centaurea solstitialis L. (Asteraceae). Southwestern Naturalist, 2000, 45, 1.	0.1	16