
Carl D Schlichting

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1002127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Herbarium records demonstrate changes in flowering phenology associated with climate change over the past century within the Cape Floristic Region, South Africa. Climate Change Ecology, 2021, 1, 100006.	1.9	6
2	A field experiment to determine the effect of dry-season irrigation on vegetative and reproductive traits in the wet-deciduous tree Bonellia nervosa. Journal of Tropical Ecology, 2020, 36, 29-35.	1.1	3
3	Leaf margins in a deciduous lineage from the Greater Cape Floristic Region track climate in unexpected directions. American Journal of Botany, 2020, 107, 735-748.	1.7	1
4	Impact of rainfall seasonality on intraspecific trait variation in a shrub from a Mediterranean climate. Functional Ecology, 2020, 34, 865-876.	3.6	16
5	Evidence for family-level variation of phenotypic traits in response to temperature of Brazilian Nyssorhynchus darlingi. Parasites and Vectors, 2020, 13, 55.	2.5	1
6	Deciphering Hybrid Larch Reaction Norms Using Random Regression. G3: Genes, Genomes, Genetics, 2019, 9, 21-32.	1.8	18
7	Adaptive phenotypic plasticity for life-history and less fitness-related traits. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190653.	2.6	54
8	Plastome based phylogenetics and younger crown node age in Pelargonium. Molecular Phylogenetics and Evolution, 2019, 137, 33-43.	2.7	19
9	Regional variation in life history traits and plastic responses to temperature of the major malaria vector Nyssorhynchus darlingi in Brazil. Scientific Reports, 2019, 9, 5356.	3.3	20
10	Measuring microenvironments for global change: DIY environmental microcontroller units (EMUs). Methods in Ecology and Evolution, 2019, 10, 578-584.	5.2	16
11	Decreasing proportion of Anopheles darlingi biting outdoors between long-lasting insecticidal net distributions in peri-lquitos, Amazonian Peru. Malaria Journal, 2018, 17, 86.	2.3	32
12	Spatial autocorrelation inflates niche breadth–range size relationships. Global Ecology and Biogeography, 2018, 27, 1426-1436.	5.8	36
13	Divergent trait and environment relationships among parallel radiations in Pelargonium (Geraniaceae): a role for evolutionary legacy?. New Phytologist, 2018, 219, 794-807.	7.3	8
14	Influence of predator-prey evolutionary history, chemical alarm-cues, and feeding selection on induction of toxin production in a marine dinoflagellate. Limnology and Oceanography, 2015, 60, 318-328.	3.1	24
15	Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity, 2015, 115, 293-301.	2.6	469
16	Functional Traits in Parallel Evolutionary Radiations and Trait-Environment Associations in the Cape Floristic Region of South Africa. American Naturalist, 2015, 185, 525-537.	2.1	28
17	Evolutionary Change in Continuous Reaction Norms. American Naturalist, 2014, 183, 453-467.	2.1	114
18	PHENOTYPIC PLASTICITY AND EPIGENETIC MARKING: AN ASSESSMENT OF EVIDENCE FOR GENETIC ACCOMMODATION. Evolution; International Journal of Organic Evolution, 2014, 68, 656-672.	2.3	214

CARL D SCHLICHTING

#	Article	IF	CITATIONS
19	Ecological Suitability and Spatial Distribution of Five Anopheles Species in Amazonian Brazil. American Journal of Tropical Medicine and Hygiene, 2013, 88, 1079-1086.	1.4	19
20	Phylogenetic influences on leaf trait integration in <i>Pelargonium</i> (Geraniaceae): Convergence, divergence, and historical adaptation to a rapidly changing climate. American Journal of Botany, 2013, 100, 1306-1321.	1.7	24
21	Low levels of climate niche conservatism may explain clade diversity patterns in the South African genusPelargonium(Geraniaceae). American Journal of Botany, 2012, 99, 954-960.	1.7	21
22	Phenotypic plasticity's impacts on diversification and speciation. Trends in Ecology and Evolution, 2010, 25, 459-467.	8.7	961
23	LEAF SHAPE EVOLUTION IN THE SOUTH AFRICAN GENUS <i>PELARGONIUM</i> L' HÉR. (GERANIACEAE). Evolution; International Journal of Organic Evolution, 2009, 63, 479-497.	2.3	51
24	Leaf shape linked to photosynthetic rates and temperature optima in South African Pelargonium species. Oecologia, 2008, 154, 625-635.	2.0	91
25	Hidden Reaction Norms, Cryptic Genetic Variation, and Evolvability. Annals of the New York Academy of Sciences, 2008, 1133, 187-203.	3.8	224
26	Geographic variation and plasticity to water and nutrients in <i>Pelargonium australe</i> . New Phytologist, 2007, 176, 136-149.	7.3	39
27	Phenotypic plasticity and evolution by genetic assimilation. Journal of Experimental Biology, 2006, 209, 2362-2367.	1.7	806
28	The importance of Anopheles albitarsis E and An. darlingi in human malaria transmission in Boa Vista, state of Roraima, Brazil. Memorias Do Instituto Oswaldo Cruz, 2006, 101, 163-168.	1.6	73
29	Coarse―versus fineâ€grained water stress in <i>Arabidopsis thaliana</i> (Brassicaceae). American Journal of Botany, 2005, 92, 101-106.	1.7	12
30	Origins of differentiation via phenotypic plasticity. Evolution & Development, 2003, 5, 98-105.	2.0	59
31	Malaria Vectors, Epidemiology, and the Re-Emergence ofAnopheles darlingiin Belém, ParÃį, Brazil. Journal of Medical Entomology, 2003, 40, 379-386.	1.8	76
32	Environment rules. Trends in Ecology and Evolution, 2003, 18, 496-497.	8.7	0
33	Editorial: Phenotypic plasticity in plants. Plant Species Biology, 2002, 17, 85-88.	1.0	44
34	Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes. Evolutionary Ecology, 2002, 16, 189-211.	1.2	312
35	Emergence of a new neotropical malaria vector facilitated by human migration and changes in land use American Journal of Tropical Medicine and Hygiene, 2002, 66, 18-22.	1.4	157
36	Evolution in Changing Environments: The "Synthetic" Work of Clausen, Keck, and Hiesey. Quarterly Review of Biology, 2001, 76, 433-457.	0.1	52

3

CARL D SCHLICHTING

#	Article	IF	CITATIONS
37	Mutational effects on constraints on character evolution and phenotypic plasticity inArabidopsis thaliana. Journal of Genetics, 1998, 77, 95-103.	0.7	10
38	Reaction norms ofArabidopsis. V. Flowering time controls phenotypic architecture in response to nutrient stress. Journal of Evolutionary Biology, 1998, 11, 285-301.	1.7	39
39	Reaction norms of. Journal of Evolutionary Biology, 1998, 11, 285.	1.7	50
40	Patterns of genotypic variation and phenotypic plasticity of light response in two tropical Piper (Piperaceae) species. American Journal of Botany, 1997, 84, 1542-1552.	1.7	56
41	Phenotypic Plasticity of Growth Trajectories in Two Species of Lobelia in Response to Nutrient Availability. Journal of Ecology, 1997, 85, 265.	4.0	60
42	On the Limits of Quantitative Genetics for the Study of Phenotypic Evolution. Acta Biotheoretica, 1997, 45, 143-160.	1.5	47
43	Developmental phenotypic plasticity: Where ecology and evolution meet molecular biology. BioEssays, 1997, 19, 519-525.	2.5	104
44	Reaction norms of Arabidopsis. IV. Relationships between plasticity and fitness. Heredity, 1996, 76, 427-436.	2.6	62
45	Developmental Reaction Norms: the Interactions among Allometry, Ontogeny and Plasticity. Plant Species Biology, 1996, 11, 69-85.	1.0	59
46	Gene regulation, quantitative genetics and the evolution of reaction norms. Evolutionary Ecology, 1995, 9, 154-168.	1.2	192
47	Reaction norms of Arabidopsis. I. Plasticity of characters and correlations across water, nutrient and light gradients. Journal of Evolutionary Biology, 1995, 8, 421-438.	1.7	122
48	R eaction norms of A rabidopsis (Brassicaceae). III. R esponse to nutrients in 26 populations from a worldwide collection. American Journal of Botany, 1995, 82, 1117-1125.	1.7	54
49	Reaction Norms of Arabidopsis. II. Response to Stress and Unordered Environmental Variation. Functional Ecology, 1995, 9, 537.	3.6	65
50	Ontogenetic Reaction Norms in Lobelia Siphilitica (Lobeliaceae): Response to Shading. Ecology, 1995, 76, 2134-2144.	3.2	67
51	Adaptive phenotypic plasticity: consensus and controversy. Trends in Ecology and Evolution, 1995, 10, 212-217.	8.7	1,193
52	Lost in Phenotypic Space: Environment-Dependent Morphology in Phlox drummondii (Polemoniaceae). International Journal of Plant Sciences, 1995, 156, 542-546.	1.3	24
53	Reaction Norms of Arabidopsis (Brassicaceae). Ill. Response to Nutrients in 26 Populations from a Worldwide Collection. American Journal of Botany, 1995, 82, 1117.	1.7	26
54	Control of Phenotypic Plasticity Via Regulatory Genes. American Naturalist, 1993, 142, 366-370.	2.1	205

CARL D SCHLICHTING

#	Article	IF	CITATIONS
55	POLLEN AND OVULE SOURCES AFFECT SEED PRODUCTION OF LOBELIA CARDINALIS (LOBELIACE AE). American Journal of Botany, 1992, 79, 891-898.	1.7	24
56	Pollen and Ovule Sources Affect Seed Production of Lobelia cardinalis (Lobeliaceae). American Journal of Botany, 1992, 79, 891.	1.7	17
57	POLLEN LOADS AND PROGENY VIGOR IN <i>CUCURBITA PEPO</i> : THE NEXT GENERATION. Evolution; International Journal of Organic Evolution, 1990, 44, 1358-1372.	2.3	88
58	Phenotypic plasticity in Phlox. III. Variation among natural populations of P. drummondii. Journal of Evolutionary Biology, 1990, 3, 411-428.	1.7	58
59	Phenotypic plasticity in Phlox. Oecologia, 1989, 78, 496-501.	2.0	134
60	Phenotypic Integration and Environmental Change. BioScience, 1989, 39, 460-464.	4.9	273
61	Male and Female Reproductive Success in the Hermaphroditic Plant Phlox drummondii. American Naturalist, 1989, 133, 212-227.	2.1	48
62	PHENOTYPIC PLASTICITY IN PHLOX. I. WILD AND CULTIVATED POPULATIONS OF P. DRUMMONDII. American Journal of Botany, 1988, 75, 161-169.	1.7	26
63	Phenotypic Plasticity in Phlox. I. Wild and Cultivated Populations of P. drummondii. American Journal of Botany, 1988, 75, 161.	1.7	9
64	The Evolution of Phenotypic Plasticity in Plants. Annual Review of Ecology, Evolution, and Systematics, 1986, 17, 667-693.	6.7	1,187
65	Effects of inbreeding on phenotypic plasticity in cultivated Phlox. Theoretical and Applied Genetics, 1986, 72, 114-119.	3.6	42
66	Phenotypic plasticity: an evolving plant character. Biological Journal of the Linnean Society, 1986, 29, 37-47.	1.6	154
67	The Families of the Monocotyledons Brittonia, 1985, 37, 231.	0.2	1
68	PHENOTYPIC PLASTICITY OF ANNUAL PHLOX: TESTS OF SOME HYPOTHESES. American Journal of Botany, 1984, 71, 252-260.	1.7	130
69	Phenotypic Plasticity of Annual Phlox: Tests of Some Hypotheses. American Journal of Botany, 1984, 71, 252.	1.7	52
70	A new sectional classification of <i>Lachenalia</i> (Asparagaceae) based on a multilocus <scp>DNA</scp> phylogeny. Taxon, 0, , .	0.7	1