Paolo Sassone-Corsi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1000960/publications.pdf Version: 2024-02-01

	1532	2076
45,713	106	204
citations	h-index	g-index
343	343	36671
docs citations	times ranked	citing authors
	45,713 citations 343 docs citations	45,713 106 citations h-index 343 343 docs citations 343 times ranked

#	Article	IF	CITATIONS
1	CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics. Nature Methods, 2012, 9, 772-773.	9.0	2,006
2	The NAD+-Dependent Deacetylase SIRT1 Modulates CLOCK-Mediated Chromatin Remodeling and Circadian Control. Cell, 2008, 134, 329-340.	13.5	1,243
3	Circadian Control of the NAD ⁺ Salvage Pathway by CLOCK-SIRT1. Science, 2009, 324, 654-657.	6.0	1,046
4	Signaling to Chromatin through Histone Modifications. Cell, 2000, 103, 263-271.	13.5	916
5	An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature, 1994, 372, 635-641.	13.7	796
6	Circadian Regulator CLOCK Is a Histone Acetyltransferase. Cell, 2006, 125, 497-508.	13.5	763
7	ATF4 Is a Substrate of RSK2 and an Essential Regulator of Osteoblast Biology. Cell, 2004, 117, 387-398.	13.5	749
8	Synergistic Coupling of Histone H3 Phosphorylation and Acetylation in Response to Epidermal Growth Factor Stimulation. Molecular Cell, 2000, 5, 905-915.	4.5	718
9	Induction of proto-oncogene JUN/AP-1 by serum and TPA. Nature, 1988, 334, 629-631.	13.7	686
10	CREM gene: Use of alternative DNA-binding domains generates multiple antagonists of cAMP-induced transcription. Cell, 1991, 64, 739-749.	13.5	680
11	A Web of Circadian Pacemakers. Cell, 2002, 111, 919-922.	13.5	669
12	Transcriptional autoregulation of the proto-oncogene fos. Nature, 1988, 334, 314-319.	13.7	632
13	Time for Food: The Intimate Interplay between Nutrition, Metabolism, and the Circadian Clock. Cell, 2015, 161, 84-92.	13.5	608
14	Reprogramming of the Circadian Clock by Nutritional Challenge. Cell, 2013, 155, 1464-1478.	13.5	579
15	Mitotic Phosphorylation of Histone H3: Spatio-Temporal Regulation by Mammalian Aurora Kinases. Molecular and Cellular Biology, 2002, 22, 874-885.	1.1	577
16	Inducibility and negative autoregulation of CREM: An alternative promoter directs the expression of ICER, an early response repressor. Cell, 1993, 75, 875-886.	13.5	576
17	Spermiogenesis deficiency and germ-cell apoptosis in CREM-mutant mice. Nature, 1996, 380, 159-162.	13.7	567
18	fos-associated cellular p39 is related to nuclear transcription factor AP-1. Cell, 1988, 54, 553-560.	13.5	528

#	Article	IF	CITATIONS
19	Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7728-7733.	3.3	490
20	Developmental switch of CREM function during spermatogenesis: from antagonist to activator. Nature, 1992, 355, 80-84.	13.7	489
21	Decoding the Epigenetic Language of Neuronal Plasticity. Neuron, 2008, 60, 961-974.	3.8	468
22	Activation of the ovalbumin gene by the estrogen receptor involves the Fos-Jun complex. Cell, 1990, 63, 1267-1276.	13.5	466
23	Metabolism and cancer: the circadian clock connection. Nature Reviews Cancer, 2009, 9, 886-896.	12.8	461
24	Direct interaction between fos and jun nuclear oncoproteins: role of the 'leucine zipper' domain. Nature, 1988, 336, 692-695.	13.7	455
25	CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature, 2007, 450, 1086-1090.	13.7	453
26	Circadian Clock Proteins and Immunity. Immunity, 2014, 40, 178-186.	6.6	451
27	Metabolism and the Circadian Clock Converge. Physiological Reviews, 2013, 93, 107-135.	13.1	429
28	Unique Chromatin Remodeling and Transcriptional Regulation in Spermatogenesis. Science, 2002, 296, 2176-2178.	6.0	426
29	Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature, 2000, 404, 87-91.	13.7	414
30	Chromatin remodelling and epigenetic features of germ cells. Nature, 2005, 434, 583-589.	13.7	403
31	DNA binding and transcriptional repression by DAX-1 blocks steroidogenesis. Nature, 1997, 390, 311-315.	13.7	401
32	PER2 Controls Lipid Metabolism by Direct Regulation of PPARÎ ³ . Cell Metabolism, 2010, 12, 509-520.	7.2	400
33	Adrenergic signals direct rhythmic expression of transcriptional represser CREM in the pineal gland. Nature, 1993, 365, 314-320.	13.7	397
34	Dimers, leucine zippers and DNA-binding domains. Trends in Genetics, 1990, 6, 36-40.	2.9	394
35	Mutations in the kinase Rsk-2 associated with Coffin-Lowry syndrome. Nature, 1996, 384, 567-570.	13.7	391
36	Transcription Factors Responsive to cAMP. Annual Review of Cell and Developmental Biology, 1995, 11, 355-377.	4.0	366

3

#	Article	IF	CITATIONS
37	Coordination of the transcriptome and metabolome by the circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5541-5546.	3.3	353
38	The Cyclic AMP Pathway. Cold Spring Harbor Perspectives in Biology, 2012, 4, a011148-a011148.	2.3	348
39	Heteroplasmy of Mouse mtDNA Is Genetically Unstable and Results in Altered Behavior and Cognition. Cell, 2012, 151, 333-343.	13.5	333
40	Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators. Nature Neuroscience, 1998, 1, 701-707.	7.1	326
41	The chromatoid body of male germ cells: Similarity with processing bodies and presence of Dicer and microRNA pathway components. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2647-2652.	3.3	326
42	Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Molecular Metabolism, 2014, 3, 29-41.	3.0	324
43	RNA Granules in Germ Cells. Cold Spring Harbor Perspectives in Biology, 2011, 3, a002774-a002774.	2.3	302
44	Proto-oncogene fos: Complex but versatile regulation. Cell, 1987, 51, 513-514.	13.5	298
45	More is better: Activators and repressors from the same gene. Cell, 1992, 68, 411-414.	13.5	288
46	Connecting Threads: Epigenetics and Metabolism. Cell, 2012, 148, 24-28.	13.5	282
47	Signaling routes to CREM and CREB: plasticity in transcriptional activation. Trends in Biochemical Sciences, 1999, 24, 281-285.	3.7	281
48	Circadian Reprogramming in the Liver Identifies Metabolic Pathways of Aging. Cell, 2017, 170, 664-677.e11.	13.5	277
49	Circadian Clock Control by SUMOylation of BMAL1. Science, 2005, 309, 1390-1394.	6.0	272
50	The chromatoid body: a germ-cell-specific RNA-processing centre. Nature Reviews Molecular Cell Biology, 2007, 8, 85-90.	16.1	265
51	Partitioning Circadian Transcription by SIRT6 Leads to Segregated Control of Cellular Metabolism. Cell, 2014, 158, 659-672.	13.5	259
52	Atlas of Circadian Metabolism Reveals System-wide Coordination and Communication between Clocks. Cell, 2018, 174, 1571-1585.e11.	13.5	258
53	Pituitary hormone FSH directs the CREM functional switch during spermatogenesis. Nature, 1993, 362, 264-267.	13.7	257
54	The emerging link between cancer, metabolism, and circadian rhythms. Nature Medicine, 2018, 24, 1795-1803.	15.2	256

#	Article	IF	CITATIONS
55	The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nature Structural and Molecular Biology, 2010, 17, 1414-1421.	3.6	252
56	Light induces chromatin modification in cells of the mammalian circadian clock. Nature Neuroscience, 2000, 3, 1241-1247.	7.1	246
57	Regulation of BMAL1 Protein Stability and Circadian Function by GSK3β-Mediated Phosphorylation. PLoS ONE, 2010, 5, e8561.	1.1	240
58	Guidelines for Genome-Scale Analysis of Biological Rhythms. Journal of Biological Rhythms, 2017, 32, 380-393.	1.4	237
59	Chromatin remodeling and neuronal response: multiple signaling pathways induce specific histone H3 modifications and early gene expression in hippocampal neurons. Journal of Cell Science, 2003, 116, 4905-4914.	1.2	232
60	A trans-acting factor is responsible for the simian virus 40 enhancer activity in vitro. Nature, 1985, 313, 458-463.	13.7	231
61	IP-1: A dominant inhibitor of Fos/Jun whose activity is modulated by phosphorylation. Cell, 1991, 64, 983-993.	13.5	226
62	Coupling gene expression to cAMP signalling: role of CREB and CREM. International Journal of Biochemistry and Cell Biology, 1998, 30, 27-38.	1.2	226
63	Positive regulation of the cAMP-responsive activator CREM by the p70 S6 kinase: An alternative route to mitogen-induced gene expression. Cell, 1994, 79, 81-91.	13.5	224
64	CBP-independent activation of CREM and CREB by the LIM-only protein ACT. Nature, 1999, 398, 165-169.	13.7	216
65	Circadian clock regulates the host response to <i>Salmonella</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9897-9902.	3.3	216
66	Defining the Independence of the Liver Circadian Clock. Cell, 2019, 177, 1448-1462.e14.	13.5	213
67	Mammalian circadian clock and metabolism – the epigenetic link. Journal of Cell Science, 2010, 123, 3837-3848.	1.2	212
68	Regulation of Steroidogenesis and the Steroidogenic Acute Regulatory Protein by a Member of the cAMP Response-Element Binding Protein Family. Molecular Endocrinology, 2002, 16, 184-199.	3.7	200
69	Lung Adenocarcinoma Distally Rewires Hepatic Circadian Homeostasis. Cell, 2016, 165, 896-909.	13.5	195
70	Multilevel regulation of the circadian clock. Nature Reviews Molecular Cell Biology, 2000, 1, 59-67.	16.1	192
71	Control of AIF-mediated Cell Death by the Functional Interplay of SIRT1 and PARP-1 in Response to DNA Damage. Cell Cycle, 2006, 5, 873-877.	1.3	189
72	Aged Stem Cells Reprogram Their Daily Rhythmic Functions to Adapt to Stress. Cell, 2017, 170, 678-692.e20.	13.5	189

#	Article	IF	CITATIONS
73	Riding Tandem: Circadian Clocks and the Cell Cycle. Cell, 2007, 129, 461-464.	13.5	188
74	A Family of LIM-Only Transcriptional Coactivators: Tissue-Specific Expression and Selective Activation of CREB and CREM. Molecular and Cellular Biology, 2000, 20, 8613-8622.	1.1	186
75	Polar nuclear localization of H1T2, a histone H1 variant, required for spermatid elongation and DNA condensation during spermiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2808-2813.	3.3	180
76	Regulation of metabolism: the circadian clock dictates the time. Trends in Endocrinology and Metabolism, 2012, 23, 1-8.	3.1	178
77	Late Arrest of Spermiogenesis and Germ Cell Apoptosis in Mice Lacking the TBP-like TLF/TRF2 Gene. Molecular Cell, 2001, 7, 509-515.	4.5	176
78	Time of Exercise Specifies the Impact on Muscle Metabolic Pathways and Systemic Energy Homeostasis. Cell Metabolism, 2019, 30, 92-110.e4.	7.2	176
79	Preparation, isolation and characterization of stage-specific spermatogenic cells for cellular and molecular analysis. Nature Methods, 2004, 1, 249-254.	9.0	175
80	Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK:BMAL1. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6386-6391.	3.3	173
81	Transcriptional CheckpointsDetermining the Fate of Male Germ Cells. Cell, 1997, 88, 163-166.	13.5	169
82	A Transcriptional Silencing Domain in DAX-1 Whose Mutation Causes Adrenal Hypoplasia Congenita. Molecular Endocrinology, 1997, 11, 1950-1960.	3.7	166
83	Coupling cAMP Signaling to Transcription in the Liver: Pivotal Role of CREB and CREM. Experimental Cell Research, 2002, 275, 143-154.	1.2	162
84	Distinct Circadian Signatures in Liver and Gut Clocks Revealed by Ketogenic Diet. Cell Metabolism, 2017, 26, 523-538.e5.	7.2	162
85	Transcriptional regulation by trans-acting factors. Trends in Genetics, 1986, 2, 215-219.	2.9	160
86	Phenotypic Rescue of a Peripheral Clock Genetic Defect via SCN Hierarchical Dominance. Cell, 2002, 110, 107-117.	13.5	158
87	No Circadian Rhythms in Testis: Period1 Expression Is Clock Independent and Developmentally Regulated in the Mouse. Molecular Endocrinology, 2003, 17, 141-151.	3.7	150
88	Differential Functions of the Aurora-B and Aurora-C Kinases in Mammalian Spermatogenesis. Molecular Endocrinology, 2007, 21, 726-739.	3.7	150
89	DAX-1, an Unusual Orphan Receptor at the Crossroads of Steroidogenic Function and Sexual Differentiation. Molecular Endocrinology, 2003, 17, 1445-1453.	3.7	149
90	A missense mutation in RPS6KA3 (RSK2) responsible for non-specific mental retardation. Nature Genetics, 1999, 22, 13-14.	9.4	142

#	Article	IF	CITATIONS
91	Genome-Wide Profiling of the Core Clock Protein BMAL1 Targets Reveals a Strict Relationship with Metabolism. Molecular and Cellular Biology, 2010, 30, 5636-5648.	1.1	134
92	Circadian acetylome reveals regulation of mitochondrial metabolic pathways. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3339-3344.	3.3	133
93	Communicating clocks shape circadian homeostasis. Science, 2021, 371, .	6.0	133
94	The circadian clock: a framework linking metabolism, epigenetics and neuronal function. Nature Reviews Neuroscience, 2013, 14, 69-75.	4.9	129
95	Metabolism control by the circadian clock and vice versa. Nature Structural and Molecular Biology, 2009, 16, 462-467.	3.6	127
96	Gut microbiota directs <scp>PPAR</scp> γâ€driven reprogramming of the liver circadian clock by nutritional challenge. EMBO Reports, 2016, 17, 1292-1303.	2.0	127
97	Light Induction of a Vertebrate Clock Gene Involves Signaling through Blue-Light Receptors and MAP Kinases. Current Biology, 2002, 12, 844-848.	1.8	121
98	Mitogen-Regulated RSK2-CBP Interaction Controls Their Kinase and Acetylase Activities. Molecular and Cellular Biology, 2001, 21, 7089-7096.	1.1	120
99	Interplay of PIWI/Argonaute protein MIWI and kinesin KIF17b in chromatoid bodies of male germ cells. Journal of Cell Science, 2006, 119, 2819-2825.	1.2	120
100	Modulation of c-"os gene transcription by negative and positive cellular factors. Nature, 1987, 326, 507-510.	13.7	119
101	Plasticity and specificity of the circadian epigenome. Nature Neuroscience, 2010, 13, 1324-1329.	7.1	118
102	SIRT1-mediated deacetylation of MeCP2 contributes to BDNF expression. Epigenetics, 2012, 7, 695-700.	1.3	118
103	Epigenetic regulation of the circadian gene Per1 contributes to age-related changes in hippocampal memory. Nature Communications, 2018, 9, 3323.	5.8	118
104	Circadian control by the reduction/oxidation pathway: Catalase represses light-dependent clock gene expression in the zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15747-15752.	3.3	116
105	CK2α phosphorylates BMAL1 to regulate the mammalian clock. Nature Structural and Molecular Biology, 2009, 16, 446-448.	3.6	116
106	The LIM-only protein FHL2 is a serum-inducible transcriptional coactivator of AP-1. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3977-3982.	3.3	115
107	The intracellular localisation of TAF7L, a paralogue of transcription factor TFIID subunit TAF7, is developmentally regulated during male germ-cell differentiation. Journal of Cell Science, 2003, 116, 1847-1858.	1.2	112
108	Poly(ADP-ribose) polymerase-2 contributes to the fidelity of male meiosis I and spermiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14854-14859.	3.3	112

#	Article	IF	CITATIONS
109	Molecular Cogs: Interplay between Circadian Clock and Cell Cycle. Trends in Cell Biology, 2018, 28, 368-379.	3.6	112
110	CREM-Dependent Transcription in Male Germ Cells Controlled by a Kinesin. Science, 2002, 298, 2388-2390.	6.0	111
111	Cycles in spatial and temporal chromosomal organization driven by the circadian clock. Nature Structural and Molecular Biology, 2013, 20, 1206-1213.	3.6	110
112	Metabolic Signaling to Chromatin. Cold Spring Harbor Perspectives in Biology, 2016, 8, a019463.	2.3	110
113	Orphan Receptor DAX-1 Is a Shuttling RNA Binding Protein Associated with Polyribosomes via mRNA. Molecular and Cellular Biology, 2000, 20, 4910-4921.	1.1	109
114	BMAL1-Driven Tissue Clocks Respond Independently to Light to Maintain Homeostasis. Cell, 2019, 177, 1436-1447.e12.	13.5	107
115	A direct role of SRY and SOX proteins in pre-mRNA splicing. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1146-1151.	3.3	106
116	Fasting Imparts a Switch to Alternative Daily Pathways in Liver and Muscle. Cell Reports, 2018, 25, 3299-3314.e6.	2.9	106
117	Transcriptional analysis of the adenovirus-5 Elll promoter: absence of sequence specificity for stimulation by Ela gene products. Nucleic Acids Research, 1985, 13, 1209-1221.	6.5	105
118	Circadian clocks, epigenetics, and cancer. Current Opinion in Oncology, 2015, 27, 50-56.	1.1	105
119	Chromatin remodeling, metabolism and circadian clocks: The interplay of CLOCK and SIRT1. International Journal of Biochemistry and Cell Biology, 2009, 41, 81-86.	1.2	104
120	Cyclic AMP signalling and cellular proliferation: regulation of CREB and CREM. FEBS Letters, 1997, 410, 22-24.	1.3	101
121	Common pathways in circadian and cell cycle clocks: Light-dependent activation of Fos/AP-1 in zebrafish controls CRY-1a and WEE-1. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10194-10199.	3.3	99
122	The circadian clock and cell cycle: interconnected biological circuits. Current Opinion in Cell Biology, 2013, 25, 730-734.	2.6	99
123	NAD+-SIRT1 control of H3K4 trimethylation through circadian deacetylation of MLL1. Nature Structural and Molecular Biology, 2015, 22, 312-318.	3.6	97
124	The Circadian Clock in the Ventromedial Hypothalamus Controls Cyclic Energy Expenditure. Cell Metabolism, 2016, 23, 467-478.	7.2	96
125	Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3333-3338.	3.3	94
126	Structural and functional features of transcription factors controlling the circadian clock. Current Opinion in Genetics and Development, 2005, 15, 548-556.	1.5	93

#	Article	IF	CITATIONS
127	Time after time: inputs to and outputs from the mammalian circadian oscillators. Trends in Neurosciences, 2002, 25, 632-637.	4.2	90
128	Circadian Clock and Breast Cancer: A Molecular Link. Cell Cycle, 2007, 6, 1329-1331.	1.3	90
129	Repression of c-fos promoter by MyoD on muscle cell differentiation. Nature, 1993, 363, 79-82.	13.7	89
130	Transcriptional response to cAMP in brain: Specific distribution and induction of CREM antagonists. Neuron, 1993, 10, 655-665.	3.8	89
131	Adaptive inducibility of CREM as transcriptional memory of circadian rhythms. Nature, 1996, 381, 83-85.	13.7	89
132	Bindarit. Cell Cycle, 2012, 11, 159-169.	1.3	89
133	Identification of a Functional Cyclic Adenosine 3′,5′-Monophosphate Response Element in the 5′-Flanking Region of the Gene for Transition Protein 1 (TP1), a Basic Chromosomal Protein of Mammalian Spermatids1. Biology of Reproduction, 1994, 51, 1322-1329.	g 1.2	86
134	Mutation Analysis of the RSK2 Gene in Coffin-Lowry Patients: Extensive Allelic Heterogeneity and a High Rate of De Novo Mutations. American Journal of Human Genetics, 1998, 63, 1631-1640.	2.6	86
135	Crystal Structure and Interactions of the PAS Repeat Region of the Drosophila Clock Protein PERIOD. Molecular Cell, 2005, 17, 69-82.	4.5	86
136	The Histone Deacetylase SIRT1 Controls Male Fertility in Mice Through Regulation of Hypothalamic-Pituitary Gonadotropin Signaling1. Biology of Reproduction, 2009, 80, 384-391.	1.2	86
137	Atlas of exercise metabolism reveals time-dependent signatures of metabolic homeostasis. Cell Metabolism, 2022, 34, 329-345.e8.	7.2	86
138	Impaired function of primitive hematopoietic cells in mice lacking the Mixed-Lineage-Leukemia homolog Mll5. Blood, 2009, 113, 1444-1454.	0.6	84
139	ROS Stress Resets Circadian Clocks to Coordinate Pro-Survival Signals. PLoS ONE, 2013, 8, e82006.	1.1	84
140	Signaling to the circadian clock: plasticity by chromatin remodeling. Current Opinion in Cell Biology, 2007, 19, 230-237.	2.6	83
141	Inhibition of Aurora-B kinase activity by poly(ADP-ribosyl)ation in response to DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14244-14248.	3.3	82
142	A Circadian Genomic Signature Common to Ketamine and Sleep Deprivation in the Anterior Cingulate Cortex. Biological Psychiatry, 2017, 82, 351-360.	0.7	82
143	Proinflammatory Stimuli Control <i>N</i> -Acylphosphatidylethanolamine-Specific Phospholipase D Expression in Macrophages. Molecular Pharmacology, 2011, 79, 786-792.	1.0	80
144	SirT1 is required in the male germ cell for differentiation and fecundity in mice. Development (Cambridge), 2014, 141, 3495-3504.	1.2	79

#	Article	IF	CITATIONS
145	Rhythmic transcription and autoregulatory loops: Winding up the biological clock. Cell, 1994, 78, 361-364.	13.5	78
146	Sirtuins and the circadian clock: Bridging chromatin and metabolism. Science Signaling, 2014, 7, re6.	1.6	78
147	Regulation of spermatogenesis by small non-coding RNAs: Role of the germ granule. Seminars in Cell and Developmental Biology, 2014, 29, 84-92.	2.3	77
148	Abnormal sperm in mice with targeted deletion of the act (activator of cAMP-responsive element) Tj ETQq0 0 0 r America, 2004, 101, 10620-10625.	gBT /Overl 3.3	ock 10 Tf 50 76
149	Environmental stimulus perception and control of circadian clocks. Current Opinion in Neurobiology, 2002, 12, 359-365.	2.0	75
150	When Metabolism and Epigenetics Converge. Science, 2013, 339, 148-150.	6.0	75
151	Coupled and uncoupled induction of fos and jun transcription by different second messengers in cells of hematopoietic origin. Nucleic Acids Research, 1990, 18, 221-228.	6.5	74
152	The Epigenetic Language of Circadian Clocks. Handbook of Experimental Pharmacology, 2013, , 29-44.	0.9	73
153	Epigenetic control and the circadian clock: Linking metabolism to neuronal responses. Neuroscience, 2014, 264, 76-87.	1.1	73
154	Nuclear regulator Pygo2 controls spermiogenesis and histone H3 acetylation. Developmental Biology, 2008, 320, 446-455.	0.9	72
155	Chrono-nutrition for the prevention and treatment of obesity and type 2 diabetes: from mice to men. Diabetologia, 2020, 63, 2253-2259.	2.9	72
156	Selective Kv1.3 channel blocker as therapeutic for obesity and insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2239-48.	3.3	71
157	Impaired light masking in dopamine D2 receptor–null mice. Nature Neuroscience, 2006, 9, 732-734.	7.1	70
158	Linking Oxygen to Time: The Bidirectional Interaction Between the Hypoxic Signaling Pathway and the Circadian Clock. Chronobiology International, 2013, 30, 510-529.	0.9	70
159	Circadian blueprint of metabolic pathways in the brain. Nature Reviews Neuroscience, 2019, 20, 71-82.	4.9	70
160	Role of Glucocorticoids and cAMP-Mediated Repression in Limiting Corticotropin-Releasing Hormone Transcription during Stress. Journal of Neuroscience, 2005, 25, 4073-4081.	1.7	69
161	Time-restricted feeding alters lipid and amino acid metabolite rhythmicity without perturbing clock gene expression. Nature Communications, 2020, 11, 4643.	5.8	69
162	The circadian epigenome: how metabolism talks to chromatin remodeling. Current Opinion in Cell Biology, 2013, 25, 170-176.	2.6	68

#	Article	IF	CITATIONS
163	Circadian clock: linking epigenetics to aging. Current Opinion in Genetics and Development, 2014, 26, 66-72.	1.5	68
164	What time is it? Deep learning approaches for circadian rhythms. Bioinformatics, 2016, 32, i8-i17.	1.8	68
165	Mammalian Bufadienolide Is Synthesized From Cholesterol in the Adrenal Cortex by a Pathway That Is Independent of Cholesterol Side-Chain Cleavage. Hypertension, 2000, 36, 442-448.	1.3	67
166	Regulation of gene expression in post-meiotic male germ cells: CREM-signalling pathways and male fertility. Human Fertility, 2006, 9, 73-79.	0.7	66
167	Unraveling the mechanisms of the vertebrate circadian clock: zebrafish may light the way. BioEssays, 2002, 24, 419-426.	1.2	65
168	Temporal Association of Protamine 1 with the Inner Nuclear Membrane Protein Lamin B Receptor during Spermiogenesis. Journal of Biological Chemistry, 2004, 279, 11626-11631.	1.6	65
169	Metabolic rivalry: circadian homeostasis and tumorigenesis. Nature Reviews Cancer, 2020, 20, 645-661.	12.8	65
170	Altered behavioral and metabolic circadian rhythms in mice with disrupted NAD+ oscillation. Aging, 2011, 3, 794-802.	1.4	65
171	Histone Lysine-Specific Methyltransferases and Demethylases in Carcinogenesis: New Targets for Cancer Therapy and Prevention. Current Cancer Drug Targets, 2013, 13, 558-579.	0.8	65
172	Minireview: NAD+, a Circadian Metabolite with an Epigenetic Twist. Endocrinology, 2012, 153, 1-5.	1.4	64
173	Rhythmic transcription: The molecular basis of circadian melatonin synthesis. Biology of the Cell, 1997, 89, 487-494.	0.7	62
174	Histone Deacetylase SIRT1 Controls Proliferation, Circadian Rhythm, and Lipid Metabolism during Liver Regeneration in Mice. Journal of Biological Chemistry, 2016, 291, 23318-23329.	1.6	62
175	Circadian Control of Fatty Acid Elongation by SIRT1 Protein-mediated Deacetylation of Acetyl-coenzyme A Synthetase 1. Journal of Biological Chemistry, 2014, 289, 6091-6097.	1.6	61
176	Comparative Circadian Metabolomics Reveal Differential Effects of Nutritional Challenge in the Serum and Liver. Journal of Biological Chemistry, 2016, 291, 2812-2828.	1.6	61
177	Ketamine Influences CLOCK:BMAL1 Function Leading to Altered Circadian Gene Expression. PLoS ONE, 2011, 6, e23982.	1.1	59
178	Spatial dynamics of SIRT1 and the subnuclear distribution of NADH species. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12715-12720.	3.3	59
179	Protein phosphatase PHLPP1 controls the light-induced resetting of the circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1642-1647.	3.3	58
180	The RelB subunit of NFκB acts as a negative regulator of circadian gene expression. Cell Cycle, 2012, 11, 3304-3311.	1.3	58

#	Article	IF	CITATIONS
181	Nutrientâ€sensitive transcription factors <scp>TFEB</scp> and <scp>TFE</scp> 3 couple autophagy and metabolism to the peripheral clock. EMBO Journal, 2019, 38, .	3.5	58
182	Cyclic AMP signalling pathway and cellular proliferation: induction of CREM during liver regeneration. Oncogene, 1997, 14, 1601-1606.	2.6	57
183	Chromatin landscape and circadian dynamics: Spatial and temporal organization of clock transcription. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6863-6870.	3.3	56
184	Ketogenesis impact on liver metabolism revealed by proteomics of lysine β-hydroxybutyrylation. Cell Reports, 2021, 36, 109487.	2.9	56
185	Human metabolomics reveal daily variations under nutritional challenges specific to serum and skeletal muscle. Molecular Metabolism, 2018, 16, 1-11.	3.0	55
186	Functional interplay between Parp-1 and SirT1 in genome integrity and chromatin-based processes. Cellular and Molecular Life Sciences, 2009, 66, 3219-3234.	2.4	53
187	SIRT1 Relays Nutritional Inputs to the Circadian Clock Through the Sf1 Neurons of the Ventromedial Hypothalamus. Endocrinology, 2015, 156, 2174-2184.	1.4	53
188	Far upstream sequences are required for efficient transcription from the adenovirus-2 E1A transcription unit. Nucleic Acids Research, 1983, 11, 8735-8745.	6.5	52
189	The circadian clock transcriptional complex: metabolic feedback intersects with epigenetic control. Annals of the New York Academy of Sciences, 2012, 1264, 103-109.	1.8	52
190	Phenotyping Circadian Rhythms in Mice. Current Protocols in Mouse Biology, 2015, 5, 271-281.	1.2	51
191	Common light signaling pathways controlling DNA repair and circadian clock entrainment in zebrafish. Cell Cycle, 2009, 8, 2794-2801.	1.3	50
192	Circadian Coordination of Antimicrobial Responses. Cell Host and Microbe, 2017, 22, 185-192.	5.1	50
193	Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms. Science Advances, 2021, 7, eabi7828.	4.7	50
194	Ectopic ICER Expression in Pituitary Corticotroph AtT20 Cells: Effects on Morphology, Cell Cycle, and Hormonal Production. Molecular Endocrinology, 1997, 11, 1425-1434.	3.7	49
195	Production of fertile offspring from genetically infertile male mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1691-1695.	3.3	49
196	Regulation of an RNA granule during spermatogenesis: acetylation of MVH in the chromatoid body of germ cells. Journal of Cell Science, 2011, 124, 4346-4355.	1.2	49
197	S-adenosyl- <scp>l</scp> -homocysteine hydrolase links methionine metabolism to the circadian clock and chromatin remodeling. Science Advances, 2020, 6, .	4.7	49
198	Borna Disease Virus Persistent Infection Activates Mitogen-activated Protein Kinase and Blocks Neuronal Differentiation of PC12 Cells. Journal of Biological Chemistry, 2001, 276, 7258-7265.	1.6	48

#	Article	IF	CITATIONS
199	Joining the dots: from chromatin remodeling to neuronal plasticity. Current Opinion in Neurobiology, 2010, 20, 432-440.	2.0	48
200	X-linked adrenal hypoplasia congenita is caused by abnormal nuclear localization of the DAX-1 protein. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8225-8230.	3.3	46
201	The Nuclear Import of TAF10 Is Regulated by One of Its Three Histone Fold Domain-Containing Interaction Partners. Molecular and Cellular Biology, 2005, 25, 4092-4104.	1.1	46
202	Transcriptional cascades during spermatogenesis: pivotal role of CREM and ACT. Molecular and Cellular Endocrinology, 2001, 179, 17-23.	1.6	45
203	Genetic control of spermiogenesis: insights from the CREM gene and implications for human infertility. Reproductive BioMedicine Online, 2005, 10, 64-71.	1.1	45
204	Immunohistochemistry of c-fos in Mouse Brain During Postnatal Development: Basal Levels and Changing Response to Metrazol and Kainate Injection. European Journal of Neuroscience, 1991, 3, 764-770.	1.2	44
205	The transcriptional repressor ICER and cAMP-induced programmed cell death. Oncogene, 1997, 15, 827-836.	2.6	44
206	Activation of RSK by UV-light: phosphorylation dynamics and involvement of the MAPK pathway. Oncogene, 2000, 19, 4221-4229.	2.6	44
207	Structure-function analysis reveals the molecular determinants of the impaired biological function of DAX-1 mutants in AHC patients. Human Molecular Genetics, 2003, 12, 1063-1072.	1.4	44
208	Light-Inducible and Clock-Controlled Expression of MAP Kinase Phosphatase 1 in Mouse Central Pacemaker Neurons. Journal of Biological Rhythms, 2007, 22, 127-139.	1.4	43
209	Novel Insights into the Downstream Pathways and Targets Controlled by Transcription Factors CREM in the Testis. PLoS ONE, 2012, 7, e31798.	1.1	42
210	Negative Control of Circadian Clock Regulator E4BP4 by Casein Kinase Iϵ-Mediated Phosphorylation. Current Biology, 2004, 14, 975-980.	1.8	41
211	Microtubule-independent and Protein Kinase A-mediated Function of Kinesin KIF17b Controls the Intracellular Transport of Activator of CREM in Testis (ACT). Journal of Biological Chemistry, 2005, 280, 31739-31745.	1.6	41
212	Unusual c-fosinduction upon chromaffin PC12 differentiation by sodium butyrate: loss of fos autoregulatory function. Nucleic Acids Research, 1990, 18, 3605-3610.	6.5	40
213	Cross-talk in signal transduction: Ras-dependent induction of cAMP-responsive transcriptional repressor ICER by nerve growth factor. Oncogene, 1997, 15, 2493-2500.	2.6	40
214	CircadiOmics: circadian omic web portal. Nucleic Acids Research, 2018, 46, W157-W162.	6.5	39
215	p75 Neurotrophin Receptor Is a Clock Gene That Regulates Oscillatory Components of Circadian and Metabolic Networks. Journal of Neuroscience, 2013, 33, 10221-10234.	1.7	38
216	Distinct metabolic adaptation of liver circadian pathways to acute and chronic patterns of alcohol intake. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25250-25259.	3.3	38

#	Article	IF	CITATIONS
217	Sexy splicing: regulatory interplays governing sex determination from Drosophila to mammals. Journal of Cell Science, 2003, 116, 441-445.	1.2	36
218	CRY Drives Cyclic CK2-Mediated BMAL1 Phosphorylation to Control the Mammalian Circadian Clock. PLoS Biology, 2015, 13, e1002293.	2.6	36
219	Transcriptional Control in Male Germ Cells: General Factor TFIIA Participates in CREM-Dependent Gene Activation. Molecular Endocrinology, 2003, 17, 2554-2565.	3.7	35
220	Mouse Period1 (mPER1) Acts as a Circadian Adaptor to Entrain the Oscillator to Environmental Light/Dark Cycles by Regulating mPER2 Protein. Journal of Neuroscience, 2005, 25, 4719-4724.	1.7	35
221	CREM modulates the circadian expression of CYP51, HMGCR and cholesterogenesis in the liver. Biochemical and Biophysical Research Communications, 2008, 376, 206-210.	1.0	35
222	Impact papers on aging in 2009. Aging, 2010, 2, 111-121.	1.4	35
223	The bacterial protein YopJ abrogates multiple signal transduction pathways that converge on the transcription factor CREB. Cellular Microbiology, 2000, 2, 231-238.	1.1	34
224	Estrogen Mediates Phosphorylation of Histone H3 in Ovarian Follicle and Mammary Epithelial Tumor Cells via the Mitotic Kinase, Aurora B. Molecular Endocrinology, 2005, 19, 2991-3000.	3.7	34
225	The closely related POU family transcription factors Brn-3a and Brn-3b are expressed in distinct cell types in the testis. International Journal of Biochemistry and Cell Biology, 2001, 33, 1027-1039.	1.2	32
226	Analysis of Circadian Rhythms in Zebrafish. Methods in Enzymology, 2005, 393, 186-204.	0.4	32
227	Heat Shock Interferes with Steroidogenesis by Reducing Transcription of the Steroidogenic Acute Regulatory Protein Gene. Molecular Endocrinology, 2001, 15, 1255-1263.	3.7	31
228	Regulation of Niemann-Pick C1 Gene Expression by the 3′5′-Cyclic Adenosine Monophosphate Pathway in Steroidogenic Cells. Molecular Endocrinology, 2003, 17, 704-715.	3.7	31
229	Metabolic clockwork. Nature, 2007, 447, 386-387.	13.7	31
230	Circadian Proteins CLOCK and BMAL1 in the Chromatoid Body, a RNA Processing Granule of Male Germ Cells. PLoS ONE, 2012, 7, e42695.	1.1	31
231	The chromatoid body of male germ cells: Epigenetic control and miRNA pathway. Cell Cycle, 2008, 7, 3503-3508.	1.3	29
232	Changes in intranuclear chromatin architecture induce bipolar nuclear localization of histone variant H1T2 in male haploid spermatids. Developmental Biology, 2006, 296, 231-238.	0.9	28
233	Circadian rhythms and memory formation: regulation by chromatin remodeling. Frontiers in Molecular Neuroscience, 2012, 5, 37.	1.4	28
234	Rapid-acting antidepressants and the circadian clock. Neuropsychopharmacology, 2022, 47, 805-816.	2.8	28

#	Article	IF	CITATIONS
235	PASting together the mammalian clock. Current Opinion in Neurobiology, 1998, 8, 635-641.	2.0	27
236	Specialized rules of gene transcription in male germ cells: the CREM paradigm*. Journal of Developmental and Physical Disabilities, 2004, 27, 322-327.	3.6	27
237	Reshaping circadian metabolism in the suprachiasmatic nucleus and prefrontal cortex by nutritional challenge. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29904-29913.	3.3	27
238	Plzf pushes stem cells. Nature Genetics, 2004, 36, 551-553.	9.4	26
239	Interplay between Microbes and the Circadian Clock. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028365.	2.3	26
240	Nutrition, metabolism, and epigenetics: pathways of circadian reprogramming. EMBO Reports, 2022, 23, e52412.	2.0	26
241	Cooperative interaction among BMAL1, HSF1, and p53 protects mammalian cells from UV stress. Communications Biology, 2018, 1, 204.	2.0	25
242	Stress-induced expression of transcriptional repressor ICER in the adrenal gland. FEBS Letters, 1998, 434, 33-36.	1.3	24
243	Transcription Factors, cAMP-responsive Element Modulator (CREM) and Tisp40, Act in Concert in Postmeiotic Transcriptional Regulation*. Journal of Biological Chemistry, 2006, 281, 15073-15081.	1.6	24
244	The pervasiveness and plasticity of circadian oscillations: the coupled circadian-oscillators framework. Bioinformatics, 2015, 31, 3181-3188.	1.8	24
245	The key role of CREM in the cAMP signaling pathway in the testis. Molecular and Cellular Endocrinology, 1994, 100, 121-124.	1.6	23
246	The inducible cyclic adenosine monophosphate early repressor (ICER) in the pituitary intermediate lobe: role in the stress response. Molecular and Cellular Endocrinology, 1999, 155, 101-113.	1.6	23
247	A specific programme of gene transcription in male germ cells. Reproductive BioMedicine Online, 2004, 8, 496-500.	1.1	23
248	Regulating the balance between differentiation and apoptosis: role of CREM in the male germ cells. Journal of Molecular Medicine, 1998, 76, 811-817.	1.7	22
249	Novel regulation of cardiac forceâ€frequency relation by CREM (cAMP response element modulator). FASEB Journal, 2003, 17, 144-151.	0.2	22
250	DAXâ€1 and SOX6 molecular interplay results in an antagonistic effect in preâ€mRNA splicing. Developmental Dynamics, 2009, 238, 1595-1604.	0.8	22
251	fos andjun interaction: The role of the leucine zipper. International Journal of Cancer, 1989, 44, 10-21.	2.3	19
252	Cocaine-mediated circadian reprogramming in the striatum through dopamine D2R and PPARÎ ³ activation. Nature Communications, 2020, 11, 4448.	5.8	19

#	Article	IF	CITATIONS
253	Cloning and Expression of Activator of CREM in Testis in Human Testicular Tissue. Biochemical and Biophysical Research Communications, 2001, 283, 406-411.	1.0	18
254	Molecular Mechanisms of Neuronal Cell Death: Implications for Nuclear Factors Responding to cAMP and Phorbol Esters. Molecular and Cellular Neurosciences, 2002, 21, 1-14.	1.0	17
255	Timing the cell cycle. Nature Cell Biology, 2003, 5, 859-861.	4.6	17
256	Proteolytic cleavage of ALF into α- and β-subunits that form homologous and heterologous complexes with somatic TFIIA and TRF2 in male germ cells. FEBS Letters, 2005, 579, 3401-3410.	1.3	17
257	Local receptors as novel regulators for peripheral clock expression. FASEB Journal, 2014, 28, 4610-4616.	0.2	17
258	Signaling Pathways and c-fosTranscriptional Response — Links to Inherited Diseases. New England Journal of Medicine, 1995, 332, 1576-1577.	13.9	16
259	Cryptic clues to clock function. Nature, 1999, 398, 557-558.	13.7	15
260	Light Entrains Diurnal Changes in Insulin Sensitivity of Skeletal Muscle via Ventromedial Hypothalamic Neurons. Cell Reports, 2019, 27, 2385-2398.e3.	2.9	15
261	Nuclear response to cyclic AMP: central role of transcription factor CREM (cyclic-AMP-responsive-element modulator). Biochemical Society Transactions, 1993, 21, 912-917.	1.6	13
262	BMAL1 Associates with NOP58 in the Nucleolus and Contributes to Pre-rRNA Processing. IScience, 2020, 23, 101151.	1.9	13
263	Personalized medicine and circadian rhythms: Opportunities for modern society. Journal of Experimental Medicine, 2020, 217, .	4.2	13
264	Peripheral Noxious Stimulation Induces CREM Expression in Dorsal Horn: Involvement of Glutamate. European Journal of Neuroscience, 1997, 9, 2778-2783.	1.2	12
265	Analysis of Histone Phosphorylation: Coupling Intracellular Signaling to Chromatin Remodeling. Methods in Enzymology, 2003, 377, 197-212.	0.4	11
266	Clinical and molecular evidence for DAX-1 inhibition of steroidogenic factor-1-dependent ACTH receptor gene expression. European Journal of Endocrinology, 2005, 152, 769-776.	1.9	11
267	Homeobox Galore: When Reproduction Goes RHOX and Roll. Cell, 2005, 120, 287-288.	13.5	11
268	The Epigenetic and Metabolic Language of the Circadian Clock. Research and Perspectives in Endocrine Interactions, 2016, , 1-11.	0.2	11
269	The central clock suffices to drive the majority of circulatory metabolic rhythms. Science Advances, 2022, 8, .	4.7	11
270	Positive Regulation of the Nuclear Activator CREM by the Mitogen-Induced p70 S6 Kinase. Immunobiology, 1995, 193, 155-160.	0.8	10

16

#	Article	IF	CITATIONS
271	Inducible cAMP Early Repressor Regulates the Period 1 Gene of the Hepatic and Adrenal Clocks. Journal of Biological Chemistry, 2013, 288, 10318-10327.	1.6	10
272	Chromatin Dynamics of Circadian Transcription. Current Molecular Biology Reports, 2015, 1, 1-9.	0.8	10
273	The Circadian Protein PER1 Modulates the Cellular Response to Anticancer Treatments. International Journal of Molecular Sciences, 2021, 22, 2974.	1.8	10
274	Same clock, different works. Nature, 1996, 384, 613-614.	13.7	9
275	Modification of histone proteins by serotonin in the nucleus. Nature, 2019, 567, 464-465.	13.7	9
276	Homer1a Undergoes Bimodal Transcriptional Regulation by CREB and the Circadian Clock. Neuroscience, 2020, 434, 161-170.	1.1	9
277	A vivid loop of light. Nature, 2001, 410, 311-313.	13.7	8
278	Photoinducible and rhythmic ICER–CREM immunoreactivity in the rat suprachiasmatic nucleus. Neuroscience Letters, 2005, 385, 87-91.	1.0	8
279	The clock within. Nature, 2011, 480, 185-187.	13.7	8
280	Circadian and epigenetic control of depression-like behaviors. Current Opinion in Behavioral Sciences, 2019, 25, 15-22.	2.0	8
281	Doxorubicin persistently rewires cardiac circadian homeostasis in mice. Archives of Toxicology, 2020, 94, 257-271.	1.9	8
282	TIPT, a male germ cell-specific partner of TRF2, is chromatin-associated and interacts with HP1. Cell Cycle, 2008, 7, 1415-1422.	1.3	7
283	Commentary: The Year in Circadian Rhythms. Molecular Endocrinology, 2010, 24, 2081-2087.	3.7	7
284	A non-pharmacological therapeutic approach in the gut triggers distal metabolic rewiring capable of ameliorating diet-induced dysfunctions encompassed by metabolic syndrome. Scientific Reports, 2020, 10, 12915.	1.6	7
285	A Fos-Jun element in the first intron of an α2u-globulin gene. Molecular and Cellular Biochemistry, 1993, 125, 127-136.	1.4	6
286	Stem cells of the germline: The specialized facets of their differentiation program. Cell Cycle, 2008, 7, 3491-3492.	1.3	6
287	Mutagenic activity of transforming genes. Trends in Genetics, 1986, 2, 6.	2.9	5
288	Mutations in signal transduction pathways and inherited diseases. Current Opinion in Genetics and Development, 1992, 2, 455-458.	1.5	5

#	Article	IF	CITATIONS
289	Functional Analysis of Transcription Factors CREB and CREM. Methods in Enzymology, 2003, 370, 396-415.	0.4	5
290	Transplantation of Mouse Embryo Fibroblasts: An Approach to Study the Physiological Pathways Linking the Suprachiasmatic Nucleus and Peripheral Clocks. Methods in Enzymology, 2005, 393, 469-478.	0.4	5
291	Clock-in, clock-out: circadian timekeeping between tissues. Biochemist, 2020, 42, 6-10.	0.2	5
292	Dopamine D2 receptor signaling in the brain modulates circadian liver metabolomic profiles. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117113119.	3.3	5
293	Universality of c-fos transcriptional regulation: The Dyad symmetry element mediates activation by PMA in T lymphocytes. Biochemical and Biophysical Research Communications, 1991, 181, 353-360.	1.0	4
294	Pleiotropic action of the adenovirus E1A proteins. Trends in Genetics, 1985, 1, 98.	2.9	3
295	The decline of induced transcription: a case of enzymatic symbiosis. Nature Structural and Molecular Biology, 2003, 10, 151-152.	3.6	3
296	Tuning up an aged clock: Circadian clock regulation in metabolism and aging. Translational Medicine of Aging, 2022, 6, 1-13.	0.6	3
297	Linking Depression to Epigenetics: Role of the Circadian Clock. Advances in Experimental Medicine and Biology, 2021, 1344, 43-53.	0.8	3
298	Discovering Light Effects on the Brain. American Journal of Psychiatry, 2006, 163, 771-771.	4.0	2
299	Circadian Biology: An Unexpected Invitee to New Time Zones. Current Biology, 2009, 19, R298-R300.	1.8	2
300	Plasticity of the Circadian System: Linking Metabolism to Epigenetic Control. Research and Perspectives in Neurosciences, 2012, , 23-30.	0.4	2
301	Combined Gene Expression and Chromatin Immunoprecipitation From a Single Mouse Hippocampus. Current Protocols, 2021, 1, e33.	1.3	2
302	Aging brains and waning clocks on the process of habituation. Aging, 2010, 2, 320-321.	1.4	2
303	Functional aspects of mouse homeo-domains. Trends in Genetics, 1985, 1, 157.	2.9	1
304	Studies of heterologous promotertrans-activation by the HTLV-IItaxprotein. Nucleic Acids Research, 1989, 17, 5737-5749.	6.5	1
305	Circadian rhythmic kinase CK2α phosphorylates BMAL1 to regulate the mammalian clock. Nature Precedings, 2008, , .	0.1	1
306	Blood Pressure AsSAuLTed by the Circadian Clock. Cell Metabolism, 2010, 11, 97-99.	7.2	1

#	Article	IF	CITATIONS
307	Sirtuins and the Circadian Clock: Epigenetic and Metabolic Crosstalk. , 2016, , 229-242.		1
308	The time of your life. Cerebrum: the Dana Forum on Brain Science, 2014, 2014, 11.	0.1	1
309	Antibiotic-induced microbiome depletion remodels daily metabolic cycles in the brain. Life Sciences, 2022, 303, 120601.	2.0	1
310	Nuclear oncogenes news. Trends in Genetics, 1987, 3, 145-146.	2.9	0
311	Gene transfer and expression: A laboratory manual. Cell, 1991, 65, 535-536.	13.5	0
312	Molecular clocks in development. Nature, 1998, 392, 872-872.	13.7	0
313	Spatial Dynamics of SIRT1 Dictate Metabolic Transitions in the Cell Nucleus. Biophysical Journal, 2016, 110, 237a-238a.	0.2	0
314	EPIGENETICS AND METABOLISM: THE CIRCADIAN CLOCK CONNECTION. FASEB Journal, 2010, 24, 413.2.	0.2	0
315	The Body's Clock: Timekeeping With Food. Frontiers for Young Minds, 0, 7, .	0.8	0