Wei-Jei Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1000916/publications.pdf

Version: 2024-02-01

50276 62596 7,089 157 46 80 citations h-index g-index papers 161 161 161 4784 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Laparoscopic Roux-en-Y Versus Mini-Gastric Bypass for the Treatment of Morbid Obesity. Annals of Surgery, 2005, 242, 20-28.	4.2	422
2	Gastric Bypass vs Sleeve Gastrectomy for Type 2 Diabetes Mellitus. Archives of Surgery, 2011, 146, 143.	2.2	385
3	Laparoscopic Roux-en-Y Vs. Mini-gastric Bypass for the Treatment of Morbid Obesity: a 10-Year Experience. Obesity Surgery, 2012, 22, 1827-1834.	2.1	343
4	Lifestyle Intervention and Medical Management With vs Without Roux-en-Y Gastric Bypass and Control of Hemoglobin A _{1c} , LDL Cholesterol, and Systolic Blood Pressure at 5 Years in the Diabetes Surgery Study. JAMA - Journal of the American Medical Association, 2018, 319, 266.	7.4	224
5	Predicting success of metabolic surgery: age, body mass index, C-peptide, and duration score. Surgery for Obesity and Related Diseases, 2013, 9, 379-384.	1.2	205
6	Effect of Laparoscopic Mini-Gastric Bypass for Type 2 Diabetes Mellitus: Comparison of BMI >35 and <35Âkg/m2. Journal of Gastrointestinal Surgery, 2008, 12, 945-952.	1.7	197
7	Predicting the Glycemic Response to Gastric Bypass Surgery in Patients With Type 2 Diabetes. Diabetes Care, 2013, 36, 20-26.	8.6	187
8	Bariatric Surgery: Asia-Pacific Perspective. Obesity Surgery, 2005, 15, 751-757.	2.1	182
9	Roux-en-Y gastric bypass for diabetes (the Diabetes Surgery Study): 2-year outcomes of a 5-year, randomised, controlled trial. Lancet Diabetes and Endocrinology,the, 2015, 3, 413-422.	11.4	163
10	Laparoscopic sleeve gastrectomy forÂdiabetes treatment in nonmorbidly obese patients: Efficacy and change ofÂinsulin secretion. Surgery, 2010, 147, 664-669.	1.9	153
11	Changes in postprandial gut hormones after metabolic surgery: a comparison of gastric bypass and sleeve gastrectomy. Surgery for Obesity and Related Diseases, 2011, 7, 683-690.	1.2	152
12	Effects of Obesity Surgery on the Metabolic Syndrome. Archives of Surgery, 2004, 139, 1088.	2.2	142
13	Laparoscopic Sleeve Gastrectomy Versus Single Anastomosis (Mini-) Gastric Bypass for the Treatment of Type 2 Diabetes Mellitus: 5-Year Results of a Randomized Trial and Study of Incretin Effect. Obesity Surgery, 2014, 24, 1552-1562.	2.1	136
14	Laparoscopic Mini-gastric Bypass: Experience with Tailored Bypass Limb According to Body Weight. Obesity Surgery, 2008, 18, 294-299.	2.1	134
15	Short-term Results of Laparoscopic Mini-Gastric Bypass. Obesity Surgery, 2005, 15, 648-654.	2.1	131
16	Single-Anastomosis Gastric Bypass (SAGB): Appraisal of Clinical Evidence. Obesity Surgery, 2014, 24, 1749-1756.	2.1	121
17	The First Consensus Statement on One Anastomosis/Mini Gastric Bypass (OAGB/MGB) Using a Modified Delphi Approach. Obesity Surgery, 2018, 28, 303-312.	2.1	117
18	Revisional surgery for laparoscopic minigastric bypass. Surgery for Obesity and Related Diseases, 2011, 7, 486-491.	1.2	98

#	Article	IF	Citations
19	Laparoscopic sleeve gastrectomy for type 2 diabetes mellitus: predicting the success by ABCD score. Surgery for Obesity and Related Diseases, 2015, 11, 991-996.	1.2	94
20	High expression of thymidylate synthase is Associated with the drug resistance of gastric carcinoma to high dose 5-fluorouracil-based systemic chemotherapy. Cancer, 1998, 82, 1626-1631.	4.1	93
21	Experience in laparoscopic sleeve gastrectomy for morbidly obese Taiwanese: staple-line reinforcement is important for preventing leakage. Surgical Endoscopy and Other Interventional Techniques, 2010, 24, 2253-2259.	2.4	93
22	High Incidence of Secondary Hyperparathyroidism in Bariatric Patients: Comparing Different Procedures. Obesity Surgery, 2018, 28, 798-804.	2.1	85
23	Gastrointestinal Metabolic Surgery for the Treatment of Diabetic Patients: A Multi-Institutional International Study. Journal of Gastrointestinal Surgery, 2012, 16, 45-52.	1.7	83
24	C-peptide Predicts the Remission of Type 2 Diabetes After Bariatric Surgery. Obesity Surgery, 2012, 22, 293-298.	2.1	81
25	Effect of Bariatric Surgery vs Medical Treatment on Type 2 Diabetes in Patients With Body Mass Index Lower Than 35. JAMA Surgery, 2015, 150, 1117.	4.3	80
26	Distinct clinicopathologic and genetic profiles in sporadic gastric cancer with different mutator phenotypes. Genes Chromosomes and Cancer, 2000, 27, 403-411.	2.8	79
27	Durability of Addition of Roux-en-Y Gastric Bypass to Lifestyle Intervention and Medical Management in Achieving Primary Treatment Goals for Uncontrolled Type 2 Diabetes in Mild to Moderate Obesity: A Randomized Control Trial. Diabetes Care, 2016, 39, 1510-1518.	8.6	79
28	Diabetes Remission and Insulin Secretion After Gastric Bypass in Patients with Body Mass Index <35Âkg/m2. Obesity Surgery, 2011, 21, 889-895.	2.1	76
29	Laparoscopic Single-Anastomosis Duodenal–Jejunal Bypass with Sleeve Gastrectomy (SADJB-SG): Short-term Result and Comparison with Gastric Bypass. Obesity Surgery, 2014, 24, 109-113.	2.1	74
30	Improvement of Insulin Resistance After Obesity Surgery: A Comparison of Gastric Banding and Bypass Procedures. Obesity Surgery, 2008, 18, 1119-1125.	2.1	73
31	Preoperative Prediction of Type 2 Diabetes Remission After Gastric Bypass Surgery: a Comparison of DiaRem Scores and ABCD Scores. Obesity Surgery, 2016, 26, 2418-2424.	2.1	70
32	Prevention of Trocar-Wound Hernia in Laparoscopic Bariatric Operations. Obesity Surgery, 2006, 16, 913-918.	2.1	69
33	Medium-Term Results of Laparoscopic Sleeve Gastrectomy: a Matched Comparison with Gastric Bypass. Obesity Surgery, 2015, 25, 1431-1438.	2.1	67
34	Breast cancer vascularity: Color Doppler sonography and histopathology study. Breast Cancer Research and Treatment, 1996, 37, 291-298.	2.5	62
35	Thirteen-Year Experience of Laparoscopic Sleeve Gastrectomy: Surgical Risk, Weight Loss, and Revision Procedures. Obesity Surgery, 2018, 28, 2991-2997.	2.1	60
36	Hepatic Histopathology of Morbid Obesity: Concurrence of Other Forms of Chronic Liver Disease. Obesity Surgery, 2006, 16, 1584-1593.	2.1	59

#	Article	IF	Citations
37	15-year experience of laparoscopic single anastomosis (mini-)gastric bypass: comparison with other bariatric procedures. Surgical Endoscopy and Other Interventional Techniques, 2018, 32, 3024-3031.	2.4	57
38	Laparoscopic resection of a primary retroperitoneal mucinous cystadenoma: Report of a case. Surgery Today, 1998, 28, 343-345.	1.5	56
39	Randomized Controlled Trial of One Anastomosis Gastric Bypass Versus Roux-En-Y Gastric Bypass for Obesity: Comparison of the YOMEGA and Taiwan Studies. Obesity Surgery, 2019, 29, 3047-3053.	2.1	56
40	The Effect and Predictive Score of Gastric Bypass and Sleeve Gastrectomy on Type 2 Diabetes Mellitus Patients with BMl < 30Âkg/m2. Obesity Surgery, 2015, 25, 1772-1778.	2.1	55
41	Expressions of E-Cadherin and Exon V6-Containing Isoforms of CD44 and their Prognostic Values in Human Transitional Cell Carcinoma. Journal of Urology, 1995, 153, 2025-2028.	0.4	54
42	Duodenal–jejunal bypass with sleeve gastrectomy versus the sleeve gastrectomy procedure alone: the role of duodenal exclusion. Surgery for Obesity and Related Diseases, 2015, 11, 765-770.	1.2	54
43	Survival after resection of gastric cancer and prognostic relevance of systematic lymph node dissection: Twenty years experience in Taiwan. World Journal of Surgery, 1995, 19, 707-713.	1.6	51
44	Predictors of diabetes remission after bariatric surgery in Asia. Asian Journal of Surgery, 2012, 35, 67-73.	0.4	50
45	Gastric cancer after miniâ€gastric bypass surgery: A case report and literature review. Asian Journal of Endoscopic Surgery, 2013, 6, 303-306.	0.9	50
46	Laparoscopic Mini-Gastric Bypass for Failed Vertical Banded Gastroplasty. Obesity Surgery, 2004, 14, 777-782.	2.1	48
47	Recent advancements in bariatric/metabolic surgery. Annals of Gastroenterological Surgery, 2017, 1, 171-179.	2.4	48
48	Revisional Gastric Bypass for Failed Restrictive Procedures: Comparison of Single-Anastomosis (Mini-) and Roux-en-Y Gastric Bypass. Obesity Surgery, 2018, 28, 970-975.	2.1	47
49	Recent advances in laparoscopic surgery. Asian Journal of Endoscopic Surgery, 2013, 6, 1-8.	0.9	46
50	Bariatric surgery decreased the serum level of an endotoxin-associated marker: lipopolysaccharide-binding protein. Surgery for Obesity and Related Diseases, 2014, 10, 1182-1187.	1.2	46
51	Dietary Intake and Weight Changes 5ÂYears After Laparoscopic Sleeve Gastrectomy. Obesity Surgery, 2017, 27, 3240-3246.	2.1	46
52	Prediction of type 2 diabetes remission after metabolic surgery: a comparison of the individualized metabolic surgery score and the ABCD score. Surgery for Obesity and Related Diseases, 2018, 14, 640-645.	1.2	45
53	Differential Influences of Gastric Bypass and Sleeve Gastrectomy on Plasma Nesfatin-1 and Obestatin Levels in Patients with Type 2 Diabetes Mellitus. Current Pharmaceutical Design, 2013, 19, 5830-5835.	1.9	45
54	Asian consensus on the relationship between obesity and gastrointestinal and liver diseases. Journal of Gastroenterology and Hepatology (Australia), 2016, 31, 1405-1413.	2.8	44

#	Article	IF	Citations
55	Gastrointestinal Quality of Life Following Laparoscopic Adjustable Gastric Banding in Asia. Obesity Surgery, 2006, 16, 586-591.	2.1	42
56	Totally Laparoscopic Radical BII Gastrectomy for the Treatment of Gastric Cancer. Surgical Laparoscopy, Endoscopy and Percutaneous Techniques, 2008, 18, 369-374.	0.8	39
57	Revision Procedures After Failed Adjustable Gastric Banding: Comparison of Efficacy and Safety. Obesity Surgery, 2017, 27, 2861-2867.	2.1	39
58	Fatty Liver Disease: Predictors of Nonalcoholic Steatohepatitis and Gallbladder Disease in Morbid Obesity. Obesity Surgery, 2008, 18, 847-853.	2.1	38
59	Effect of probiotics on postoperative quality of gastric bypass surgeries: a prospective randomized trial. Surgery for Obesity and Related Diseases, 2016, 12, 57-61.	1.2	37
60	Laparoscopic sleeve gastrectomy in Asia: Long term outcome and revisional surgery. Asian Journal of Surgery, 2016, 39, 21-28.	0.4	36
61	Long-Term Efficacy of Bariatric Surgery for the Treatment of Super-Obesity: Comparison of SG, RYGB, and OAGB. Obesity Surgery, 2021, 31, 3391-3399.	2.1	36
62	Laparoscopic gastric bypass for the treatment of type 2 diabetes: a comparison of Roux-en-Y versus single anastomosis gastric bypass. Surgery for Obesity and Related Diseases, 2018, 14, 509-515.	1.2	34
63	Bile Acid and Fibroblast Growth Factor 19 Regulation in Obese Diabetics, and Non-Alcoholic Fatty Liver Disease after Sleeve Gastrectomy. Journal of Clinical Medicine, 2019, 8, 815.	2.4	33
64	Laparoscopic Nissen Fundoplication with Gastric Plication as a Potential Treatment of Morbidly Obese Patients with GERD, First Experience and Results. Obesity Surgery, 2014, 24, 1447-1452.	2.1	32
65	Gastrointestinal metabolic surgery for the treatment of type 2 diabetes mellitus. World Journal of Gastroenterology, 2014, 20, 14315.	3.3	31
66	Bariatric Surgery for Patients With Early-Onset vs Late-Onset Type 2 Diabetes. JAMA Surgery, 2016, 151, 798.	4.3	30
67	Laparoscopic Conversion of Gastric Bypass Complication to Sleeve Gastrectomy: Technique and Early Results. Obesity Surgery, 2016, 26, 2014-2021.	2.1	30
68	Measuring the small bowel length may decrease the incidence of malnutrition after laparoscopic one-anastomosis gastric bypass with tailored bypass limb. Surgery for Obesity and Related Diseases, 2019, 15, 1712-1718.	1.2	28
69	Transumbilical 2-site laparoscopic Roux-en-Y gastric bypass: initial results of 100 cases and comparison with traditional laparoscopic technique. Surgery for Obesity and Related Diseases, 2012, 8, 208-213.	1.2	26
70	Recent advances in bariatric/metabolic surgery: appraisal of clinical evidence. Journal of Biomedical Research, 2015, 29, 98.	1.6	26
71	Metabolic Surgery for Diabetes Treatment: Sleeve Gastrectomy or Gastric Bypass?. World Journal of Surgery, 2017, 41, 216-223.	1.6	26
72	Laparoscopic Versus Open Vertical Banded Gastroplasty for the Treatment of Morbid Obesity., 2001, 11, 9-13.		24

#	Article	IF	Citations
73	Clinicopathologic Characteristics and Prognoses of Gastric Cancer in Patients With a Positive Familial History of Cancer. Journal of Clinical Gastroenterology, 2003, 36, 30-33.	2.2	24
74	Effects of bariatric weight loss surgery on glucose metabolism, inflammatory cytokines, and serum tartrate-resistant acid phosphatase 5a in obese Chinese adults. Clinica Chimica Acta, 2016, 453, 197-202.	1.1	23
75	Loss of pS2 Protein Expression Is an Early Event of Intestinal-type Gastric Cancer. Japanese Journal of Cancer Research, 1998, 89, 278-282.	1.7	22
76	Clinical Significance of Central Obesity in Laparoscopic Bariatric Surgery. Obesity Surgery, 2003, 13, 921-925.	2.1	22
77	Patient Selection in One Anastomosis/Mini Gastric Bypass—an Expert Modified Delphi Consensus. Obesity Surgery, 2022, 32, 2512-2524.	2.1	22
78	Selective depression of T-lymphocyte subsets in gastric cancer patients: An implication of immunotherapy. Journal of Surgical Oncology, 1994, 55, 165-169.	1.7	20
79	Effects of Obesity Surgery on Type 2 Diabetes Mellitus Asian Patients. World Journal of Surgery, 2009, 33, 1895-1903.	1.6	20
80	Compared to Sleeve Gastrectomy, Duodenal–Jejunal Bypass with Sleeve Gastrectomy Gives Better Glycemic Control in T2DM Patients, with a Lower β-Cell Response and Similar Appetite Sensations: Mixed-Meal Study. Obesity Surgery, 2016, 26, 2862-2872.	2.1	20
81	Long-term effect of bariatric surgery on resolution of nonalcoholic steatohepatitis (NASH): An external validation and application of a clinical NASH score. Surgery for Obesity and Related Diseases, 2018, 14, 1600-1606.	1.2	20
82	Revision of Sleeve Gastrectomy with Hiatal Repair with Gastropexy for Gastroesophageal Reflux Disease. Obesity Surgery, 2019, 29, 2381-2386.	2.1	20
83	Genome-wide association study of morbid obesity in Han Chinese. BMC Genetics, 2019, 20, 97.	2.7	20
84	Weight Loss and Improvement of Obesity-related Illness Following Laparoscopic Adjustable Gastric Banding Procedure for Morbidly Obese Patients in Taiwan. Journal of the Formosan Medical Association, 2006, 105, 887-894.	1.7	18
85	Randomized Controlled Trials in Bariatric Surgery. Obesity Surgery, 2013, 23, 118-130.	2.1	18
86	Metabolic Surgery for Type 2 Diabetes Mellitus: Experience from Asia. Diabetes and Metabolism Journal, 2016, 40, 433.	4.7	18
87	Protein deficiency after gastric bypass: The role of common limb length in revision surgery. Surgery for Obesity and Related Diseases, 2019, 15, 441-446.	1.2	18
88	Increased prevalence of Helicobacter pylori infection among patients affected with intestinal-type gastric cancer at non-cardiac locations. Journal of Gastroenterology and Hepatology (Australia), 1997, 12, 425-428.	2.8	17
89	Laparoscopic adjustable gastric banding (LAGB) with gastric plication: Short-term results and comparison with LAGB alone and sleeve gastrectomy. Surgery for Obesity and Related Diseases, 2015, 11, 125-130.	1.2	16
90	Metabolic surgery ameliorates cardiovascular risk in obese diabetic patients: Influence of different surgical procedures. Surgery for Obesity and Related Diseases, 2018, 14, 1832-1840.	1.2	16

#	Article	IF	CITATIONS
91	Diabetes Associated Markers After Bariatric Surgery: Fetuin-A, but Not Matrix Metalloproteinase-7, Is Reduced. Obesity Surgery, 2015, 25, 2328-2334.	2.1	15
92	National Differences in Remission of Type 2 Diabetes Mellitus After Roux-en-Y Gastric Bypass Surgery-Subgroup Analysis of 2-Year Results of the Diabetes Surgery Study Comparing Taiwanese with Americans with Mild Obesity (BMI 30–35Âkg/m2). Obesity Surgery, 2017, 27, 1189-1195.	2.1	15
93	Twenty years' experience of laparoscopic 1-anastomosis gastric bypass: surgical risk and long-term results. Surgery for Obesity and Related Diseases, 2021, 17, 968-975.	1.2	14
94	Does bariatric surgery influence plasma levels of fetuin-A and leukocyte cell-derived chemotaxin-2 in patients with type 2 diabetes mellitus?. PeerJ, 2018, 6, e4884.	2.0	14
95	Intragenic Homozygous Deletions of MTS1 Gene in Gastric Cancer in Taiwan. Japanese Journal of Cancer Research, 1996, 87, 1052-1055.	1.7	13
96	Genomeâ€wide scan for circulating vascular adhesion proteinâ€1 levels: ⟨i⟩⟨scp⟩MACROD⟨/scp⟩2⟨/i⟩ as a potential transcriptional regulator of adipogenesis. Journal of Diabetes Investigation, 2018, 9, 1067-1074.	2.4	13
97	Occult breast carcinoma â€" Use of color Doppler in localization. Breast Cancer Research and Treatment, 1996, 37, 299-302.	2.5	12
98	Acute gastric remnant dilatation, a rare early complication of laparoscopic miniâ€gastric bypass. Asian Journal of Endoscopic Surgery, 2014, 7, 185-187.	0.9	12
99	Gastro-intestinal Quality of Life After Metabolic Surgery for the Treatment of Type 2 Diabetes Mellitus. Obesity Surgery, 2015, 25, 1371-1379.	2.1	12
100	Laparoscopic Sleeve Gastrectomy for Type 2 Diabetes Mellitus: Long-Term Result and Recurrence of Diabetes. Obesity Surgery, 2020, 30, 3669-3674.	2.1	12
101	Comparison of gut hormones and adipokines stimulated by glucagon test among patients with type II diabetes mellitus after metabolic surgery. Neuropeptides, 2016, 55, 39-45.	2.2	11
102	15-year follow-up of vertical banded gastroplasty: comparison with other restrictive procedures. Surgical Endoscopy and Other Interventional Techniques, 2016, 30, 489-494.	2.4	11
103	The Effects of Bariatric Surgery on Renal, Neurological, and Ophthalmic Complications in Patients with Type 2 Diabetes: the Taiwan Diabesity Study. Obesity Surgery, 2021, 31, 117-126.	2.1	11
104	Change of plasma amylin after bariatric surgery challenged by oral glucose is associated with remission of type 2 diabetes mellitus. Journal of the Chinese Medical Association, 2021, 84, 1001-1006.	1.4	11
105	Outcomes of the first global multidisciplinary consensus meeting including persons living with obesity to standardize patientâ€reported outcome measurement in obesity treatment research. Obesity Reviews, 2022, 23, .	6.5	11
106	ESR1 gene and insulin resistance remission are associated with serum uric acid decline for severely obese patients undergoing bariatric surgery. Surgery for Obesity and Related Diseases, 2014, 10, 14-22.	1.2	10
107	Laparoscopic single-anastomosis duodenal-jejunal bypass with sleeve gastrectomy (SADJB-SG): Surgical risk and long-term results. Surgery for Obesity and Related Diseases, 2019, 15, 236-243.	1.2	10
108	One Anastomosis Gastric Bypass for the Treatment of Type 2 Diabetes: Long-Term Results and Recurrence. Obesity Surgery, 2021, 31, 935-941.	2.1	10

#	Article	IF	Citations
109	Efficacy of Different Procedures of Metabolic Surgery for Type 2 Diabetes in Asia: a Multinational and Multicenter Exploratory Study. Obesity Surgery, 2021, 31, 2153-2160.	2.1	10
110	History and current status of bariatric and metabolic surgeries in <scp>E</scp> ast <scp>A</scp> sia. Asian Journal of Endoscopic Surgery, 2015, 8, 268-274.	0.9	9
111	Perspectives on interventional diabetology: Duodenal exclusion is promising for human type 2 diabetes mellitus remission. Nutrition, 2016, 32, 141-145.	2.4	9
112	Proximal Jejunal Bypass Improves the Outcome of Gastric Clip in Patients with Obesity and Type 2 Diabetes Mellitus. Obesity Surgery, 2019, 29, 1148-1153.	2.1	9
113	Changes of serum pepsinogen level and ABC classification after bariatric surgery. Journal of the Formosan Medical Association, 2021, 120, 1377-1385.	1.7	9
114	Fibroblast Growth Factor 19 and Fibroblast Growth Factor 21 Regulation in Obese Diabetics, and Non-Alcoholic Fatty Liver Disease after Gastric Bypass. Nutrients, 2022, 14, 645.	4.1	9
115	Laparo-Endoscopic Gastrostomy (LEG) Decompression: a Novel One-Time Method of Management of Gastric Leaks Following Sleeve Gastrectomy. Obesity Surgery, 2015, 25, 2213-2218.	2.1	8
116	CASE REPORT: Primary cystic keratinizing squamous cell carcinoma of the liver in a patient with treated nasopharyngeal carcinoma. Journal of Gastroenterology and Hepatology (Australia), 1997, 12, 229-232.	2.8	7
117	Clinical Characteristics and Outcome of Morbidly Obese Bariatric Patients with Concurrent Hepatitis B Viral Infection. Obesity Surgery, 2008, 18, 589-594.	2.1	6
118	Bariatric versus diabetes surgery after five years of follow up. Asian Journal of Surgery, 2016, 39, 96-102.	0.4	6
119	Influence of Asian Ethnicities on Short- and Mid-term Outcomes Following Laparoscopic Sleeve Gastrectomy. Obesity Surgery, 2019, 29, 1781-1788.	2.1	6
120	Changes in post-oral glucose challenge pancreatic polypeptide hormone levels following metabolic surgery: A comparison of gastric bypass and sleeve gastrectomy. Neuropeptides, 2020, 81, 102032.	2.2	6
121	Do different bariatric surgical procedures influence plasma levels of matrix metalloproteinase-2, -7, and -9 among patients with type 2 diabetes mellitus?. World Journal of Diabetes, 2020, 11, 252-260.	3.5	6
122	Reappraisal of the new UICC staging system for gastric cancer: problem in lymph node stage. Hepato-Gastroenterology, 2002, 49, 860-4.	0.5	5
123	The use of color doppler in the diagnosis of occult breast cancer. Journal of Clinical Ultrasound, 1995, 23, 192-194.	0.8	4
124	Appendix Diameter: A Predictor of Wound Infection after Laparoscopic Appendectomy. American Surgeon, 2011, 77, 307-310.	0.8	4
125	Laparoscopic bariatric surgery for the treatment of severe hypertriglyceridemia. Asian Journal of Surgery, 2015, 38, 96-101.	0.4	4
126	Variation in Small Bowel Length and Its Influence on the Outcomes of Sleeve Gastrectomy. Obesity Surgery, 2021, 31, 36-42.	2.1	4

#	Article	IF	Citations
127	Prediction of successful weight reduction after bariatric surgery by data mining technologies. Obesity Surgery, 2007, 17, 1235-1241.	2.1	4
128	Probiotics for gallstone prevention in patients with bariatric surgery: A prospective randomized trial. Asian Journal of Surgery, 2022, 45, 2664-2669.	0.4	4
129	HSCRP as surrogate marker in predicting long term effect of bariatric surgery on resolution of non-alcoholic steatohepatitis. Asian Journal of Surgery, 2019, 42, 203-208.	0.4	3
130	Impacts of Different Modes of Bariatric Surgery on Plasma Levels of Hepassocin in Patients with Diabetes Mellitus. Reports, 2019, 2, 24.	0.5	3
131	Study design and recruitment for a prospective controlled study of diabesity: Taiwan Diabesity Study. Asian Journal of Surgery, 2019, 42, 244-250.	0.4	3
132	Longâ€ŧerm outcomes of metabolic surgery in overweight and obese patients with type 2 diabetes in <scp>Asia</scp> . Diabetes, Obesity and Metabolism, 2021, 23, 742-753.	4.4	3
133	Predictors of diabetes relapse after metabolic surgery in Asia. Surgery for Obesity and Related Diseases, 2022, 18, 454-461.	1.2	3
134	Laparoscopic obesity surgery in an Asian Institute: A 10â€year prospective study with review of literature. Asian Journal of Endoscopic Surgery, 2009, 2, 43-51.	0.9	2
135	Letter to the Editor: Trocar Site Hernia Prevention in Laparoscopic Bariatric Surgery. Obesity Surgery, 2016, 26, 2227-2228.	2.1	2
136	Response to Comment: "Laparo-Endoscopic Gastrostomy (LEG) Decompression: a Novel One-Time Method of Management of Gastric Leaks Following Sleeve Gastrectomy― Obesity Surgery, 2016, 26, 622-623.	2.1	2
137	Clinical Characteristics and Outcome of Morbidly Obese Bariatric Patients with Concurrent Hepatitis C Viral Infection. Obesity Surgery, 2019, 29, 828-834.	2.1	2
138	Experience of the First 100 OAGB in China: OAGB In Situ Technique. Obesity Surgery, 2022, 32, 2945-2951.	2.1	2
139	Outcomes of laparoscopic revisional conversion of sleeve gastrectomy to Roux-en-Y gastric bypass: Diff erent strategies for obese and non-obese Asian patients. Asian Journal of Surgery, 2023, 46, 761-766.	0.4	2
140	Hepatic tumor necrosis factor-α, leptin and adiponectin expression in morbid obese patients: Clinicopathological correlations. Obesity Research and Clinical Practice, 2012, 6, e55-e62.	1.8	1
141	Letter to "Predictive Factors of Type 2 Diabetes Mellitus Remission Following Bariatric Surgery: a Meta-analysis― Obesity Surgery, 2015, 25, 2424-2425.	2.1	1
142	Bariatric Surgery for Patients With Type 2 Diabetesâ€"Reply. JAMA Surgery, 2016, 151, 396.	4.3	1
143	Paired Editorial: Effects of Sleeve Gastrectomy with Transit Bipartition on Glycemic Variables, Lipid Profile, Liver Enzymes and Nutritional Status in Type 2 Diabetes Mellitus Patients: a 1-Year Follow-up Study. Obesity Surgery, 2020, 30, 1128-1129.	2.1	1
144	Comparison of intraocular pressure during laparoscopic totally extraperitoneal (TEP) versus transabdominal preperitoneal (TAPP) inguinal hernia repair. Surgical Endoscopy and Other Interventional Techniques, 2022, 36, 2018-2024.	2.4	1

#	Article	IF	Citations
145	Distinct clinicopathologic and genetic profiles in sporadic gastric cancer with different mutator phenotypes. Genes Chromosomes and Cancer, 2000, 27, 403-411.	2.8	1
146	Sleeve Gastrectomy in Mice using Surgical Clips. Journal of Visualized Experiments, 2020, , .	0.3	1
147	Reply to Letter: Metabolic Syndrome is Related to Nonalcoholic Steatohepatitis in Severely Obese Subjects. Obesity Surgery, 2008, 18, 1358-1358.	2.1	0
148	Roux-en-Y gastric bypass for lower esophageal submucosal cancer in an obese diabetic patient. Surgery for Obesity and Related Diseases, 2014, 10, e73-e75.	1.2	0
149	Metabolic surgery for the treatment of hypertriglyceridemia-related pancreatitis due to familial lipoprotein lipase deficiency. Surgery for Obesity and Related Diseases, 2014, 10, 995-998.	1.2	0
150	Comment on: "Prediction of Diabetes Remission in Morbidly Obese Patients After Roux-en-Y Gastric Bypass.― Obesity Surgery, 2016, 26, 3009-3010.	2.1	0
151	Reply to the Letter "Gastric Remnant Dilatation: a Rare Technical Complication Following Laparoscopic One Anastomosis (Mini) Gastric Bypass― Obesity Surgery, 2017, 27, 2682-2683.	2.1	0
152	Reply to letter to the editor re: prediction of type 2 diabetes remission after metabolic surgery: A comparison of Individualized metabolic surgery score and ABCD scores. Surgery for Obesity and Related Diseases, 2018, 14, 1923-1924.	1.2	0
153	Comment on: Resolution of metabolic syndrome and related metabolic disorders after bariatric surgery: Comparison of sleeve gastrectomy and gastric bypass. Surgery for Obesity and Related Diseases, 2018, 14, 1357-1358.	1.2	0
154	Reply letter to the editor metabolic surgery ameliorates cardiovascular risk in obese diabetic patients: influence of different surgical procedures. Surgery for Obesity and Related Diseases, 2019, 15, 353-354.	1.2	0
155	Management of Nutritional and Metabolic Complications of Bariatric Surgery: Hepatic Complications After Bariatric Surgery. , 2021, , 139-146.		0
156	Derivation of equations for the plateau principle and their application to changes in body mass index and insulin sensitivity after bariatric surgery. FASEB Journal, 2011, 25, 987.1.	0.5	0
157	Change of cardiovascular risk associated serologic biomarkers after gastric bypass: A comparison of diabetic and non-diabetic Asian patients. Asian Journal of Surgery, 2022, 45, 2253-2258.	0.4	O