Haoxin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10008336/publications.pdf Version: 2024-02-01

HAOXIN MANC

#	Article	IF	CITATIONS
1	Bi(trifluoromethyl) Benzoic Acid-Assisted Shallow Defect Passivation for Perovskite Solar Cells with an Efficiency Exceeding 21%. ACS Applied Materials & Interfaces, 2022, 14, 3930-3938.	8.0	21
2	Natural Chlorophyll Derivative Assisted Defect Passivation and Hole Extraction for MAPbl ₃ Perovskite Solar Cells with Efficiency Exceeding 20%. ACS Applied Energy Materials, 2022, 5, 1390-1396.	5.1	5
3	Constructing Efficient Hole-Transporting Materials by Tuning Fluorine Substitution for Inverted Perovskite Solar Cells with Efficiency Exceeding 20%. ACS Applied Energy Materials, 2022, 5, 5901-5908.	5.1	15
4	Surface Defect Passivation and Energy Level Alignment Engineering with a Fluorine-Substituted Hole Transport Material for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 13470-13477.	8.0	26
5	In-situ secondary annealing treatment assisted effective surface passivation of shallow defects for efficient perovskite solar cells. Journal of Power Sources, 2021, 492, 229621.	7.8	23
6	Passivation functionalized phenothiazine-based hole transport material for highly efficient perovskite solar cell with efficiency exceeding 22%. Chemical Engineering Journal, 2021, 410, 128328.	12.7	83
7	Interfacial Molecular Doping and Energy Level Alignment Regulation for Perovskite Solar Cells with Efficiency Exceeding 23%. ACS Energy Letters, 2021, 6, 2690-2696.	17.4	96
8	13.6% Efficient Organic Dye-Sensitized Solar Cells by Minimizing Energy Losses of the Excited State. ACS Energy Letters, 2019, 4, 943-951.	17.4	284
9	One plus one greater than two: high-performance inverted planar perovskite solar cells based on a composite Cul/CuSCN hole-transporting layer. Journal of Materials Chemistry A, 2018, 6, 21435-21444.	10.3	64
10	Design and synthesis of dopant-free organic hole-transport materials for perovskite solar cells. Chemical Communications, 2018, 54, 9571-9574.	4.1	49
11	Efficient dye-sensitized solar cells with [copper(6,6′-dimethyl-2,2′-bipyridine) ₂] ^{2+/1+} redox shuttle. RSC Advances, 2017 7, 4611-4615.	, 3.6	48
12	A Perylenediimide Tetramerâ€Based 3D Electron Transport Material for Efficient Planar Perovskite Solar Cell. Solar Rrl, 2017, 1, 1700046.	5.8	28
13	Efficient and Stable Inverted Planar Perovskite Solar Cells Employing CuI as Holeâ€Transporting Layer Prepared by Solid–Gas Transformation. Energy Technology, 2017, 5, 1836-1843.	3.8	94
14	Engineering of hole-selective contact for low temperature-processed carbon counter electrode-based perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 24272-24280.	10.3	78
15	Application of Small Molecule Donor Materials Based on Phenothiazine Core Unit in Bulk Heterojunction Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16851-16855.	3.1	24