Ruth G Shaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10003264/publications.pdf

Version: 2024-02-01

44 papers 5,289 citations

331670
21
h-index

243625 44 g-index

45 all docs

45 docs citations

45 times ranked

6913 citing authors

#	Article	IF	CITATIONS
1	Range Shifts and Adaptive Responses to Quaternary Climate Change. Science, 2001, 292, 673-679.	12.6	1,963
2	Constraint to Adaptive Evolution in Response to Global Warming. Science, 2001, 294, 151-154.	12.6	780
3	EVOLUTIONARY RESPONSES TO CHANGING CLIMATE. Ecology, 2005, 86, 1704-1714.	3.2	652
4	Rapid climate change and the rate of adaptation: insight from experimental quantitative genetics. New Phytologist, 2012, 195, 752-765.	7.3	262
5	Rate, spectrum, and evolutionary dynamics of spontaneous epimutations. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6676-6681.	7.1	251
6	Unifying Lifeâ€History Analyses for Inference of Fitness and Population Growth. American Naturalist, 2008, 172, E35-E47.	2.1	164
7	COMMUNITY GENETICS: EXPANDING THE SYNTHESIS OF ECOLOGY AND GENETICS. Ecology, 2003, 84, 545-558.	3.2	110
8	Fitness of F1 hybrids between weedy Brassica rapa and oilseed rape (B. napus). Heredity, 1998, 81, 429-435.	2.6	100
9	Fine-Grained Analysis of Spontaneous Mutation Spectrum and Frequency in <i>Arabidopsis thaliana</i> . Genetics, 2019, 211, 703-714.	2.9	97
10	OUTBREEDING DEPRESSION VARIES AMONG COHORTS OF IPOMOPSIS AGGREGATA PLANTED IN NATURE. Evolution; International Journal of Organic Evolution, 2000, 54, 485-491.	2.3	87
11	CHANGES IN GENETIC VARIANCES AND COVARIANCES: G WHIZ!. Evolution; International Journal of Organic Evolution, 1995, 49, 1260-1267.	2.3	81
12	VARIATION IN SEED CHARACTERS IN <i>NEMOPHILA MENZIESII</i> : EVIDENCE OF A GENETIC BASIS FOR MATERNAL EFFECT. Evolution; International Journal of Organic Evolution, 1997, 51, 1445-1456.	2.3	73
13	INFERRING FITNESS LANDSCAPES. Evolution; International Journal of Organic Evolution, 2010, 64, 2510-2520.	2.3	66
14	Properties of Ethylmethane Sulfonate-Induced Mutations Affecting Life-History Traits in $\langle i \rangle$ Caenorhabditis elegans $\langle i \rangle$ and Inferences About Bivariate Distributions of Mutation Effects. Genetics, 2000, 156, 143-154.	2.9	64
15	Project Baseline: An unprecedented resource to study plant evolution across space and time. American Journal of Botany, 2016, 103, 164-173.	1.7	58
16	Multivariate phenotypic selection on a complex sexual signal. Evolution; International Journal of Organic Evolution, 2017, 71, 1742-1754.	2.3	55
17	Genetic Components of Variation in Nemophila menziesii Undergoing Inbreeding: Morphology and Flowering Time. Genetics, 1998, 150, 1649-1661.	2.9	52
18	EFFECTS OF COMPETITION ON THE FITNESS OF WILD AND CROP-WILD HYBRID SUNFLOWER FROM A DIVERSITY OF WILD POPULATIONS AND CROP LINES. Evolution; International Journal of Organic Evolution, 2006, 60, 2044-2055.	2.3	49

#	Article	lF	Citations
19	Strong ecological but weak evolutionary effects of elevated CO 2 on a recombinant inbred population of Arabidopsis thaliana. New Phytologist, 2007, 175, 351-362.	7.3	37
20	Indirect effects drive evolutionary responses to global change. New Phytologist, 2014, 201, 335-343.	7.3	31
21	Expression of additive genetic variance for fitness in a population of partridge pea in two field sites. Evolution; International Journal of Organic Evolution, 2018, 72, 2537-2545.	2.3	27
22	WHAT FRACTION OF MUTATIONS RED.UCES FITNESS? A REPLY TO KEIGHTLEY AND LYNCH. Evolution; International Journal of Organic Evolution, 2003, 57, 686-689.	2.3	26
23	Additive genetic variance for lifetime fitness and the capacity for adaptation in an annual plant. Evolution; International Journal of Organic Evolution, 2019, 73, 1746-1758.	2.3	23
24	THE CONTRIBUTION OF SPONTANEOUS MUTATION TO VARIATION IN ENVIRONMENTAL RESPONSES OF ARABIDOPSIS THALIANA: RESPONSES TO LIGHT. Evolution; International Journal of Organic Evolution, 2005, 59, 266-275.	2.3	19
25	An integrated analysis of phenotypic selection on insect body size and development time. Evolution; International Journal of Organic Evolution, 2015, 69, 2525-2532.	2.3	19
26	A Balanced Data Archiving Policy for Long-Term Studies. Trends in Ecology and Evolution, 2016, 31, 84-85.	8.7	17
27	Climateâ€related genetic variation in a threatened tree species, <i>Pinus albicaulis</i> . American Journal of Botany, 2017, 104, 1205-1218.	1.7	15
28	Phenotypic selection on ponderosa pine seed and seedling traits in the field under three experimentally manipulated drought treatments. Evolutionary Applications, 2019, 12, 159-174.	3.1	15
29	The Effect of Plant Inbreeding and Stoichiometry on Interactions with Herbivores in Nature: Echinacea angustifolia and Its Specialist Aphid. PLoS ONE, 2011, 6, e24762.	2.5	14
30	Gene Action of New Mutations in Arabidopsis thaliana. Genetics, 2006, 172, 1855-1865.	2.9	12
31	The susceptibility of <i><scp>E</scp>chinacea angustifolia</i> to a specialist aphid: ecoâ€evolutionary perspective on genotypic variation and demographic consequences. Journal of Ecology, 2015, 103, 809-818.	4.0	9
32	Fitness of F1 hybrids between weedy Brassica rapa and oilseed rape (B. napus). Heredity, 1998, 81, 429-435.	2.6	9
33	Seedling Recruitment in the Longâ€Lived Perennial, <i>Echinacea angustifolia</i> : A 10â€Year Experiment. Restoration Ecology, 2012, 20, 352-359.	2.9	8
34	Multivariate differentiation of quackgrass (Elytrigia repens) from three farming systems. Weed Science, 2002, 50, 677-685.	1.5	6
35	Factors limiting the availability of native seed for reconstructing Minnesota's prairies: stakeholder perspectives. Restoration Ecology, 2022, 30, e13554.	2.9	5
36	Competitive effects of cultivar and wild switchgrass on other native grasses. Biological Invasions, 2018, 20, 2439-2449.	2.4	4

#	Article	IF	CITATION
37	Detrimental effects of rhizobial inoculum early in the life of partridge pea, Chamaecrista fasciculata. American Journal of Botany, 2018, 105, 796-802.	1.7	4
38	Transparency and reproducibility in evolutionary research. Evolution; International Journal of Organic Evolution, 2016, 70, 1433-1434.	2.3	3
39	Plant community response to switchgrass (<i>Panicum virgatum</i>) population source in establishing prairies. Ecological Applications, 2018, 28, 1818-1829.	3.8	3
40	Latitude of seed source impacts flowering phenology and fitness in translocated plant populations. Restoration Ecology, 2021, 29, e13464.	2.9	3
41	Switchgrass Population and Cold–Moist Stratification Mediate Germination. Crop Science, 2015, 55, 2746-2752.	1.8	2
42	Population source affects competitive response and effect in a C 4 grass (Panicum virgatum). Restoration Ecology, 2019, 27, 1317-1326.	2.9	2
43	Effects of Selection Regime on Invasive Characteristics in an Emerging Biomass Crop, Switchgrass (Panicum virgatum L.). Sustainability, 2021, 13, 5045.	3.2	2
44	Society for the study of evolution at 75 years: Introduction to the symposium papers. Evolution; International Journal of Organic Evolution, 2022, , .	2.3	0